Human Brain Anatomical Connectivity Analysis Using Sequential Sampling and Resampling

  • Bo Zheng
  • Jagath C. Rajapakse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4774)


Diffusion Tensor MR Imaging (DTI) provides non-invasive approach to track white matter (WM) trajectories within human brain in vivo, and thereby facilitates studies of anatomical connectivity between sub-cortical and cortical regions. This paper presents a probabilistic fiber tracking framework, which aims to address the two problems in earlier approaches: first, it does not adopt fractional anisotropy (FA) as the stopping criteria so that the exploration of cortico-cortical connectivity is feasible; secondly, fiber tracking process is regularized so that trajectory with low curvature means high belief of connection between two voxels.


Fractional Anisotropy Seed Point Tracking Process Fiber Tracking Tracking Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mori, S., van Zijl, P.C.M.: Fiber tracking: principles and strategies - a technical review. NMR Biomed. 15, 468–480 (2002)CrossRefGoogle Scholar
  2. 2.
    Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.M.: Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269A (1999)CrossRefGoogle Scholar
  3. 3.
    Xue, R., van Zijl, P.C.M., Crain, B.J., Solaiyappan, M., Mori, S.: In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tesnor imaging. Magn. Reson. Med. 42, 1123–1127 (1999)CrossRefGoogle Scholar
  4. 4.
    Jones, D.K., Simmons, A., Williams, S.C., Horsfield, M.A.: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn. Reson. Med. 42, 37–41 (1999)CrossRefGoogle Scholar
  5. 5.
    Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)CrossRefGoogle Scholar
  6. 6.
    Lazar, M., Weinstein, D., Hasan, K., Alexander, A.L.: Axon tractography with tensorlines. In: Proceedings of the 8th Annual Meeting of ISMRM, Denver, pp. 482–482 (2000)Google Scholar
  7. 7.
    Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. USA 96, 10422–10427 (1999)CrossRefGoogle Scholar
  8. 8.
    Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M.: Characterization and Propagation of Uncertainty in Diffusion-Weighted MR Imaging. Magn. Reson. Med. 50, 1077–1088 (2003)CrossRefGoogle Scholar
  9. 9.
    Makris, N., Worth, A.J., Sorensen, A.G., Papadimitriou, G.M., Wu, O., Reese, T.G., Wedeen, V., Davis, T., Stakes, J.W., Caviness, V.S., Kaplan, E., Rosen, B., Pandya, D.N., Kennedy, D.N.: Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann. Neurol. 42, 951–962 (1997)CrossRefGoogle Scholar
  10. 10.
    Makris, N., Meyer, J.W., Bates, J.F., Yeterian, E.H., Kennedy, D.N., Caviness, V.S.: MRI-based topographic parcellation of human cerebral white matter and nuclei II. Rationale and applications with systematics of cerebral connectivity. Neuroimage 9, 18–45 (1999)CrossRefGoogle Scholar
  11. 11.
    Wiegell, M.R., Larsson, H.B.W., Wedeen, V.J.: Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology 217, 897–903 (2000)Google Scholar
  12. 12.
    Hagmann, P., Thiran, J.P., Jonasson, L., Vandergheynst, P., Clarke, S., Maeder, P., Meuli, R.: DTI mapping of human brain connectivity: statistical fiber tracking and virtual dissection. NeuroImage 19, 545–554 (2003)CrossRefGoogle Scholar
  13. 13.
    Parker, G.J.M., Haroon, H.A., Claudia, A.M.: Wheeler-Kingshott: A Framework for a Streamline-Based Probabilistic Index of Connectivity (PICo) Using a Structural Interpretation of MRI Diffusion Measurements. J. Magn. Reson. 18, 242–254 (2003)Google Scholar
  14. 14.
    Friman, O., Farneback, G., Westin, C.-F.: A Bayesian Approach for Stochastic White Matter Tractography. IEEE Trans. Med. Imag. 25, 965–978 (2006)CrossRefGoogle Scholar
  15. 15.
    Mattiello, J., Basser, P.J., Lebihan, D.: Analytical expression for the b matrix in NMR diffusion imaging and spectroscopy. J. Magn. Reson. A 108, 131–141 (1994)CrossRefGoogle Scholar
  16. 16.
    Basser, P.J., Mattiello, J., Lebihan, D.: Diagonal and off-diagonal components of the self-diffusion tensor: their relation to and estimation from the NMR spin-echo signal. In: 11th Annual Meeting of the SMRM, Berlin, p. 1222 (1992)Google Scholar
  17. 17.
    Basser, P.J., Mattiello, J., Lebihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin-echo. J. Magn. Reson. B 103, 247–254 (1994)Google Scholar
  18. 18.
    Zheng, B., Rajapakse, J.C.: Effect of diffusion weighting and number of sensitizing directions on fiber tracking in DTI. Neural Information Processing, 102–109 (2006)Google Scholar
  19. 19.
    Parker, G.J.M., Wheeler-Kingshott, C.A.M., Barker, G.J.: Estimating Distributed Anatomical Connectivity Using Fast Marching Methods and Diffusion Tensor Imaging. IEEE Trans. on Med. Imag. 21, 505–512 (2002)CrossRefGoogle Scholar
  20. 20.
    Hofer, S., Frahm, J.: Topography of the human corpus callosum revisited–Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage 32, 989–994 (2006)CrossRefGoogle Scholar
  21. 21.
    Jones, D.K., Griffin, L.D., Alexander, D.C., Catani, M., Horsfield, M.A., Howard, R., Williams, S.C.R.: Spatial Normalization and Averaging of Diffusion Tensor MRI Data Sets. NeuroImage 17, 592–617 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bo Zheng
    • 1
  • Jagath C. Rajapakse
    • 1
    • 2
  1. 1.BioInformatics Research Center, School of Computer Engineering, Nanyang Technological University, 50 Nanyang AvenueSingapore 639798
  2. 2.Singapore-MIT Alliance, N2-B2C-15, 50 Nanyang AvenueSingapore

Personalised recommendations