Predicting Binding Peptides with Simultaneous Optimization of Entropy and Evolutionary Distance

  • Menaka Rajapakse
  • Lin Feng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4774)


Identifying antigenic peptides that bind to Major Histocompatibility Complex (MHC) molecules plays a central role in determining T-cell epitopes suitable as vaccine targets. Prediction of the binding ability of antigenic peptides to MHC class II molecules is more complex that for class I. Class II molecules bind to peptides of different lengths and the core region that interacts with the binding site on the class II MHC molecule is located anywhere within the peptide. Obtaining an alignment for these binding sites is an important first step in determining the binding motif of MHC class II alleles. In this paper, we exploit entropy and evolutionary distance of the key binding positions (anchor positions) of an alignment in determining the best possible alignment for a given set of peptide data. Once an optimal alignment is found, a weight matrix representing the binding motif is estimated. The weight matrix designed is subsequently applied to predict MHC binding peptides.


  1. 1.
    Reche, P.A., Glutting, J.P., Reinherz, E.L.: Prediction of MHC class I binding peptides using profile motifs. Hum. Immunology 63(9), 701–709 (2002)CrossRefGoogle Scholar
  2. 2.
    Hammer, J., et al.: Precise prediction of major histocompatibility complex class II –peptide interaction based on peptide side chain scanning. J. Exp. Medicine 180(6), 2353–2358 (1994)CrossRefGoogle Scholar
  3. 3.
    Rammensee, H., et al.: MHC ligands and peptide motifs: first listing. Immunogenetics 41(4), 178–228 (1995)CrossRefGoogle Scholar
  4. 4.
    Rammensee, H., et al.: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999)CrossRefGoogle Scholar
  5. 5.
    Stern, L.J., et al.: Crystal structure of the human class II MHC protein HLA-DR1 complexed with an inluenza virus peptide. Nature 368, 215–221 (1994)CrossRefGoogle Scholar
  6. 6.
    Dessen, A., et al.: X-ray crystal structure of HLA-DR4 (DRA*0101, DRB1*0401) complexed with a peptide from human collagen II. Immunity 7, 473–481 (1997)CrossRefGoogle Scholar
  7. 7.
    Mamitsuka, H.: Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins 33(4), 460–474 (1998)CrossRefGoogle Scholar
  8. 8.
    Nielsen, M., et al.: Improved Prediction of MHC class I and class II epitopes using a novel Gibbs Sampling Approach. Bioinformatics 20(9), 1388–1397 (2004)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Neuwald, A.F., et al.: Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Science 4, 1618–1632 (1995)CrossRefGoogle Scholar
  11. 11.
    Reche, P.A., et al.: Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56, 405–419 (2004)CrossRefGoogle Scholar
  12. 12.
    Deb, K., et al.: A Fast and Elitist Multiobjective Genetic Algorithm. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)CrossRefGoogle Scholar
  13. 13.
    Heinkoff, S., Heinkoff, J.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad.Sci. USA 89, 10915–10919 (1992)CrossRefGoogle Scholar
  14. 14.
    Hobohm, U., et al.: Selection of representative protein datasets. Protein Sci. 1, 409–417 (1992)CrossRefGoogle Scholar
  15. 15.
    Altschul, S.F., et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402 (1997)CrossRefGoogle Scholar
  16. 16.
    Bairoch, A., Apweiler, R.: The SWISS-PROT protein sequence database and its supplement TrEMBL. Nucleic Acids Research 28, 45–48 (2000)CrossRefGoogle Scholar
  17. 17.
    Brusic, V., Rudy, G., Harrison, L.C.: MHCPEP, a database of MHC-binding peptides: update 1997. Nucleic Acids Res. 26, 368–371 (1998)CrossRefGoogle Scholar
  18. 18.
    Bhasin, M., Singh, H., Raghava, G.P.S.: MHCBN, a comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19, 665–666 (2003)CrossRefGoogle Scholar
  19. 19.
    Nielsen, M., Lundegaard, C., Worning, P., Hvid, C.S., Lamberth, K., Buus, S., Brunak, S., Lund, O.: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 20(9), 1388–1397 (2004)CrossRefGoogle Scholar
  20. 20.
    Blythe, M.J., Doytchinova, I.A., Flower, D.R.: JenPep: a database of quantitative functional peptide data for immunology. Bioinformatics 18, 434–439 (2002)CrossRefGoogle Scholar
  21. 21.
    Reche, P.A., Zhang, H., Glutting, J.P., Reinherz, E.L.: EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics 21, 2140–2141 (2005)CrossRefGoogle Scholar
  22. 22.
    Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Bailey, T.L., Elkan, C.: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28–36. AAAI Press, Menlo Park, California (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Menaka Rajapakse
    • 1
    • 2
  • Lin Feng
    • 2
  1. 1.Institute for Infocomm Research, 21 Heng Mui Keng Terrace, 119613Singapore
  2. 2.School of Computer Engineering, Nanyang Technological University, Block N4, Nanyang Avenue, 639798Singapore

Personalised recommendations