In Silico Expression Profiles of Human Endogenous Retroviruses

  • Merja Oja
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4774)


Human endogenous retroviruses (HERVs) are remnants of ancient retrovirus infections and now reside within the human DNA. Recently HERV expression has been detected in both normal and diseased tissues. However, the patterns of expression of individual HERV sequences are mostly unknown. In this work we use a generative mixture model, based on hidden Markov models, for estimating the activities of individual HERV sequences from databases of expressed sequences. We determine the relative activities of sixty HERVs from the HML2 group in five human tissues, i.e. we estimate the expression profile of each HERV. This allows us to gain insight into HERV function.


Hide Markov Model UCSC Genome Browser Hide Markov Model Model Long Terminal Repeat Sequence Generative Mixture Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of Molecular Biology 215, 403–410 (1990)Google Scholar
  2. 2.
    Blomberg, J., Uschameckis, D., Jern, P.: Evolutionary aspects of human endogenous retroviral sequences and disease. In: Sverdlov, E. (ed.) Retroviruses and Primate Evolution, pp. 208–243. Eurekah Bioscience (2005)Google Scholar
  3. 3.
    Lander, E., et al.: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)CrossRefGoogle Scholar
  4. 4.
    Griffiths, D.J.: Endogenous retroviruses in the human genome sequence. Genome Biology 2(6), 1017.1–1017.5 (2001)CrossRefGoogle Scholar
  5. 5.
    Jurka, J.: RepBase update: a database and an electronic journal of repetitive elements. Trends in genetics 16(9), 418–420 (2000)CrossRefGoogle Scholar
  6. 6.
    Kim, T.-H., Jeon, Y.-J., Kim, W.-Y., Kim, H.-S.: HESAS: HERVs expression and structure analysis system. Bioinformatics 21(8), 1699–1700 (2005)CrossRefGoogle Scholar
  7. 7.
    Krogh, A., Brown, M., Mian, I.S., Sjölander, K., Haussler, D.: Hidden Markov models in computational biology: Applications to protein modeling. Journal of Molecular Biology 235(5), 1501–1531 (1994)CrossRefGoogle Scholar
  8. 8.
    Muir, A., Lever, A., Moffett, A.: Expression and functions of human endogenous retroviruses in the placenta: An update. Placenta 25(suppl. 1), S16–S25 (2004)CrossRefGoogle Scholar
  9. 9.
    Muradrasoli, S., Forsman, A., Hu, L., Blikstad, V., Blomberg, J.: Development of real-time PCRs for detection and quantitation of human MMTV-like (HML) sequences. HML expression in human tissues and cell lines. J. Virol. Meth. 136, 83–92 (2006)CrossRefGoogle Scholar
  10. 10.
    Nelson, P.N., Carnegie, P.R., Martin, J., Ejtehadi, H.D., Hooley, P., Roden, D., Rowland-Jones, S., Warren, P., Astley, J., Murray, P.G.: Demystified human endogenous retroviruses. Molecular Pathology 56, 11–18 (2003)CrossRefGoogle Scholar
  11. 11.
    Oja, M., Peltonen, J., Blomberg, J., Kaski, S.: Methods for estimating human endogenous retrovirus activities from EST databases. BMC Bioinformatics 8(suppl. 2), S11 (2007)CrossRefGoogle Scholar
  12. 12.
    Ostertag, E.M., Goodier, J.L., Zhang, Y., Kazazian, H.H.J.: SVA elements are nonautonomous retrotransposons that cause disease in humans. The American Journal of Human Genetics 73(6), 1444–1451 (2003)CrossRefGoogle Scholar
  13. 13.
    Seifarth, W., Frank, O., Zeifelder, U., Spiess, B., Greenwood, A.D., Hehlmann, R., Leib-Mösch, C.: Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. Journal of Virology 79(1), 341–352 (2005)CrossRefGoogle Scholar
  14. 14.
    Smit, A.F.A., Hubley, R., Green, P.: RepeatMasker open-3.0 (1996-2004),
  15. 15.
    Sperber, G., Jern, P., Airola, T., Blomberg, J.: Automated recognition of retroviral sequences; RetroTector©. Nucleic Acids Research, Accepted with revision (2007)Google Scholar
  16. 16.
    Stauffer, Y., Theiler, G., Sperisen, P., Lebedev, Y., Jongeneel, C.V.: Digital expression profiles of human endogenous retroviral families in normal and cancerous tissues. Cancer Immunity 4(2) (2004)Google Scholar
  17. 17.
    Su, A.I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K.A., Block, D., Zhang, J., Soden, R., Hayakawa, M., Kreiman, G., Cooke, M.P., Walker, J.R., Hogenesch, J.B.: A gene atlas of the mouse and human protein-encoding transcriptomes. PNAS 101(16), 6062–6067 (2004)CrossRefGoogle Scholar
  18. 18.
    The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87 (2005)Google Scholar
  19. 19.
    eVOC ontologies,
  20. 20.
    Expressed sequence tags database (dbEST),

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Merja Oja
    • 1
  1. 1.Helsinki Institute for Information Technology, Helsinki University of Technology, P.O. Box 5400, 02015 TKK, Finland, and Department of Computer Science, University of Helsinki 

Personalised recommendations