Skip to main content

Vapnik-Chervonenkis Dimension of Parallel Arithmetic Computations

  • Conference paper
Algorithmic Learning Theory (ALT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4754))

Included in the following conference series:

Abstract

We provide upper bounds for the Vapnik-Chervonenkis dimension of concept classes parameterized by real numbers whose membership tests are programs described by bounded-depth arithmetic networks. Our upper bounds are of the kind O(k 2 d 2), where d is the depth of the network (representing the parallel running time) and k is the number of parameters needed to codify the concept. This bound becomes O(k 2 d) when membership tests are described by Boolean-arithmetic circuits. As a consequence we conclude that families of concepts classes having parallel polynomial time algorithms expressing their membership tests have polynomial VC dimension.

Partially supported by spanish grant TIN2007-67466-C02-02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldaz, M., Heintz, J., Matera, G., Montaña, J.L., Pardo, L.M.: Time-space tradeoffs in algebraic complexity theory. Real computation and complexity (Schloss Dagstuhl, 1998). J. Complexity 16(1), 2–49 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldaz, M., Heintz, J., Matera, G., Montaña, J.L., Pardo, L.M.: Combinatorial hardness proofs for polynomial evaluation (extended abstract). In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 167–175. Springer, Heidelberg (1998)

    Google Scholar 

  3. Ben-Or, M.: Lower Bounds for Algebraic Computation Trees. In: STOC, pp. 80–86 (1983)

    Google Scholar 

  4. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. xvi+453 pp. Springer, New York (1998)

    Google Scholar 

  5. Blum, L., Shub, M., Smale, S.: On a theory of computation over the real numbers: NP completeness, recursive functions and universal machines [Bull. Amer. Math. Soc (N.S.) 21 (1989), no. 1, 1–46; MR0974426 (90a:68022)]. In: Workshop on Dynamical Systems (Trieste, 1988),pp. 23–52, Pitman Res. Notes Math. Ser. 221, Longman Sci. Tech. Harlow (1990)

    Google Scholar 

  6. Bochnak, J., Coste, M., Roy, M.-F: Géométrie algébrique réelle (French) [Real algebraic geometry]. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12, pp.x+373. Springer, Berlin (1987)

    Google Scholar 

  7. Fitchas, N., Galligo, A., Morgestern, A.: Algorithmes rapides en sequentiel et en parallele pour l’élimination de quantificateurs en géométrie élémentaire. Seminaire de Structures Algebriques Ordennes. Universite de Paris VII (1987)

    Google Scholar 

  8. von zur Gathen, J.: Parallel arithmetic computations, a survey. In: Math. Found. Comput. Sci. 13th Proc. (1986)

    Google Scholar 

  9. Goldberg, P., Jerrum, M.: Bounding the Vapnik-Chervonenkis dimension of concept classes parametrizes by real numbers. Machine Learning 18, 131–148 (1995)

    MATH  Google Scholar 

  10. Grigorev, D.: Complexity of deciding Tarski Algebra. J. Symp. Comp. 5, 65–108 (1988)

    Article  MathSciNet  Google Scholar 

  11. Karpinski, M., Macintyre, A.: Polynomial bounds for VC dimension of sigmoidal and general Pffafian neual networks. J. Comp. Sys. Sci. 54, 169–176 (1997)

    Article  MATH  Google Scholar 

  12. Meyer Auf der Heide, F.: A polynomial linear search algorithm for the n-dimensional Knapsack problem. J. ACM 31(3), 668–676 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Milnor, J.: On the Betti Numbers of Real Varieties. Proc. Amer. Math. Soc. 15, 275–280 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Montaña, J.L., Pardo, L.M., Ramanakoraisina, R.: An extension of Warren’s lower bounds for approximations. J. Pure Appl. Algebra 87(3), 251–258 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Montaña, J.L., Pardo, L.M.: Lower bounds for arithmetic networks. Appl. Algebra Engrg. Comm. Comput. 4(1), 1–24 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Montaña, J.L., Pardo, L.M., Recio, T.: The non-scalar model of complexity in Computational Geometry. In: Proc. MEGA 1990. Progress in Math. 94. pp. 347–362. Birkhãuser(1991)

    Google Scholar 

  17. Oleinik, O.A.: Estimates of the Betti Numbers of Real Algebraic Hypersurfaces. Mat. Mat. Sbornik 70, 63–640 (1951)

    Google Scholar 

  18. Oleinik, O.A., Petrovsky, I.B.: On the topology of Real Algebraic Surfaces. Izv. Akad. Nauk SSSR (in Trans. of the Amer. Math. Soc.) 1, 399–417 (1962)

    Google Scholar 

  19. Rabin, M.: Proving simultaneous positivity of linear forms. J. Comp. System Sci. 6, 639–650 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thom, R.: Sur l’Homologie des Varietes Alg ’ ebriques R ’ eelles. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 255–265. Princeton Univ. Press (1965)

    Google Scholar 

  21. Vapnik, V.: Statistical learning theory. John Willey & Sons (1998)

    Google Scholar 

  22. Warren, H.E.: Lower Bounds for Approximation by non Linear Manifolds. Trans. A.M.S. 133, 167–178 (1968)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alonso, C.L., Montaña, J.L. (2007). Vapnik-Chervonenkis Dimension of Parallel Arithmetic Computations. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds) Algorithmic Learning Theory. ALT 2007. Lecture Notes in Computer Science(), vol 4754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75225-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75225-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75224-0

  • Online ISBN: 978-3-540-75225-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics