Resource Sharing in Performance Models

  • Vlastimil Babka
  • Martin Děcký
  • Petr Tůma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4748)


In software systems, individual components interact not only through explicit function invocations, but also through implicit resource sharing. The use of shared resources significantly influences the duration of the invoked functions. For resources that are heavily shared, capturing this influence can lead to performance models that have a large number of elements and a large number of dependencies. We introduce an approach that can model resource sharing separately from function invocations, keeping the performance model reasonably simple while still describing many of the effects of resource sharing on the duration of function invocations. The approach has been tested on the CoCoME component application modeling example.


enterprise systems performance modeling resource sharing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    Agarwal, A., Hennessy, J., Horowitz, M.: An Analytical Cache Model. In: TOCS, vol. 7(2), ACM Press, New York (1989)Google Scholar
  4. 4.
    Balsamo, S., DiMarco, A., Inverardi, P., Simeoni, M.: Model-Based Performance Prediction in Software Development. In: TSE, IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  5. 5.
  6. 6.
    Drakopoulos, E., Merges, M.J.: Performance Analysis of Client-Server Storage Systems. In: TC, IEEE Computer Society Press, Los Alamitos (1992)Google Scholar
  7. 7.
    Frigo, M., Johnson, S.G.: FFTW,
  8. 8.
    Ghosh, A., Givargis, T.: Cache Optimization for Embedded Processor Cores: An Analytical Approach. In: TODAES, vol. 9(4), ACM Press, New York (2004)Google Scholar
  9. 9.
    Haas, P.J.: Stochastic Petri Nets: Modelling, stability, simulation. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  10. 10.
    Hauswirth, M., Diwan, A., Sweeney, P.F., Mozer, M.C.: Automating Vertical Profiling. In: OOPSLA 2005, ACM Press, New York (2005)Google Scholar
  11. 11.
  12. 12.
    Hossain, A., Pease, D.J.: An Analytical Model for Trace Cache Instruction Fetch Performance. In: ICCD 2001, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  13. 13.
    Kalibera, T., Bulej, L., Tuma, P.: Benchmark Precision and Random Initial State. In: SPECTS 2005, SCS (2005)Google Scholar
  14. 14.
    Kannan, H., Guo, F., Zhao, L., Illikkal, R., Iyer, R., Newell, D., Solihin, Y., Kozyrakis, C.: From Chaos to QoS: Case Studies in CMP Resource Management. In: SIGARCH CAN, vol. 35(1), ACM Press, New York (2007)Google Scholar
  15. 15.
    Kant, K., Sundaram, C.R.M.: A Server Performance Model for Static Web Workloads. In: ISPASS 2000, IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  16. 16.
    Kounev, S., Buchmann, A.: Performance Modeling of Distributed E-Business Applications using Queuing Petri Nets. In: ISPASS 2003, IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  17. 17.
    Liu, Y., Gorton, I.: Performance Prediction of J2EE Applications Using Messaging Protocols. In: Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2005. LNCS, vol. 3489, Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Liu, Y., Fekete, A., Gorton, I.: Predicting the Performance of Middleware-Based Applications at the Design Level. In: WOSP 2004, ACM Press, New York (2004)Google Scholar
  19. 19.
    Pentakalos, O.I., Menasce, D.A., Halem, M., Yesha, Y.: An Approximate Performance Model of a Unitree Mass Storage System. In: MSS 1995, IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  20. 20.
    Pimentel, A.D., Thompson, M., Polstra, S., Erbas, C.: On the Calibration of Abstract Performance Models for System-Level Design Space Exploration. In: SAMOS 2006, IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  21. 21.
  22. 22.
    SOFA Component Model,
  23. 23.
  24. 24.
    Ufimtsev, A., Murphy, L.: Performance Modeling of a JavaEE Component Application using Layered Queuing Networks: Revised Approach and a Case Study. In: SAVCBS 2006, ACM Press, New York (2006)Google Scholar
  25. 25.
    Vetland, V.: Measurement-Based Composite Computational Work Modelling of Software, Doctoral thesis, University of Trondheim (1993)Google Scholar
  26. 26.
    Xu, J., Oufimtsev, A., Woodside, C.M., Murphy, L.: Performance Modeling and Prediction of Enterprise JavaBeans with Layered Queuing Network Templates. In: SIGSOFT SEN, vol. 31(2), ACM, New York (2006)Google Scholar
  27. 27.
    Xu, J., Woodside, C.M.: Template-Driven Performance Modeling of Enterprise Java Beans. In: MWS 2005, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  28. 28.
    Woodside, C.M., Neron, E., Ho, E.D.S., Mondoux, B.: An Active-Server Model for the Performance of Parallel Programs Written Using Rendezvous. In: JSS, vol. 6(1-2), Elsevier, Amsterdam (1986)Google Scholar
  29. 29.
    Wu, X.P., Woodside, C.M.: Performance Modeling from Software Components. In: WOSP 2004, ACM Press, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Vlastimil Babka
    • 1
  • Martin Děcký
    • 1
  • Petr Tůma
    • 1
  1. 1.Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, Prague 1, 118 00Czech Republic

Personalised recommendations