Skip to main content

On the Computation of A  ∞ -Maps

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4770))

Included in the following conference series:

  • 692 Accesses

Abstract

Starting from a chain contraction (a special chain homotopy equivalence) connecting a differential graded algebra A with a differential graded module M, the so-called homological perturbation technique “tensor trick” [8] provides a family of maps, {m i }i ≥ 1, describing an A  ∞ -algebra structure on M derived from the one of algebra on A. In this paper, taking advantage of some annihilation properties of the component morphisms of the chain contraction, we obtain a simplified version of the existing formulas of the mentioned A  ∞ -maps, reducing the computational cost of computing m n from O(n!2) to O(n!).

Partially supported by the PAICYT research project FQM-296 and by a project of University of the Basque Country “EHU06/05”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berciano, A., Sergeraert, F.: Software to compute A  ∞ -(co)algebras: Araia Craic, http://www.ehu.es/aba/araia-craic.htm

  2. Brown, R.: The twisted Eilenberg–Zilber theorem, Celebrazioni Archimedee del secolo XX, Simposio di topologia, 34–37 (1967)

    Google Scholar 

  3. Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press, Princeton (1956)

    MATH  Google Scholar 

  4. Eilenberg, S., Mac Lane, S.: On the groups H(π,n) −I. Annals of Math. 58, 55–106 (1953)

    Article  MathSciNet  Google Scholar 

  5. Gugenheim, V.K.A.M.: On the chain complex of a fibration. Illinois J. Math. 3, 398–414 (1972)

    MathSciNet  Google Scholar 

  6. Gugenheim, V.K.A.M.: On Chen’s iterated integrals, Illinois J. Math, 703–715 (1977)

    Google Scholar 

  7. Gugenheim, V.K.A.M., Lambe, L.A.: Perturbation theory in Differential Homological Algebra I. Illinois J. Math. 33(4), 566–582 (1989)

    MATH  MathSciNet  Google Scholar 

  8. Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Perturbation Theory in Differential Homological Algebra II. Illinois J. Math. 35(3), 357–373 (1991)

    MATH  MathSciNet  Google Scholar 

  9. Gugenheim, V.K.A.M., Stasheff, J.: On Perturbations and A  ∞ –structures. Bull. Soc. Math. Belg. 38, 237–246 (1986)

    MATH  MathSciNet  Google Scholar 

  10. Huebschmann, J., Kadeishvili, T.: Small models for chain algebras. Math. Z. 207, 245–280 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jiménez, M.J.: A  ∞ –estructuras y perturbación homológica, Tesis Doctoral de la Universidad de Sevilla, Spain (2003)

    Google Scholar 

  12. Jiménez, M.J., Real, P.: Rectifications of A  ∞ –algebras. In Communications in Algebra (to appear)

    Google Scholar 

  13. Kadeishvili, T.: On the Homology Theory of Fibrations. Russian Math. Surveys 35(3), 231–238 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of ICM (Zurich, 1994), Birkhäuser, Basel, pp. 120–139 (1995) [alg-geom/9411018]

    Google Scholar 

  15. Lambe, L.A., Stasheff, J.D.: Applications of perturbation theory to iterated fibrations. Manuscripta Math. 58, 367–376 (1987)

    Article  MathSciNet  Google Scholar 

  16. Mac Lane, S.: Homology, Classics in Mathematics (Reprint of the 1975 edition). Springer, Berlin (1995)

    Google Scholar 

  17. Nakatsu, T.: Classical open-string field theory: A  ∞ -algebra, renormalization group and boundary states. Nuclear Physics B 642, 13–90 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Polishchuk, A.: Homological mirror symmetry with higher products, math. AG/9901025. Kontsevich, M., Soibelman, Y. Homological mirror symmetry and torus fibrations, math.SG/0011041

    Google Scholar 

  19. Prouté, A.: Algebrès diffeérentielles fortement homotopiquement associatives (A  ∞ -algèbre), Ph. D. Thesis, Université Paris VII (1984)

    Google Scholar 

  20. Stasheff, J.D.: Homotopy Associativity of H-spaces I, II. Trans. A.M.S 108, 275–312 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor G. Ganzha Ernst W. Mayr Evgenii V. Vorozhtsov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berciano, A., Jiménez, M.J., Real, P. (2007). On the Computation of A  ∞ -Maps. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2007. Lecture Notes in Computer Science, vol 4770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75187-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75187-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75186-1

  • Online ISBN: 978-3-540-75187-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics