Advertisement

A Full System of Invariants for Third-Order Linear Partial Differential Operators in General Form

  • Ekaterina Shemyakova
  • Franz Winkler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4770)

Abstract

We find a full system of invariants with respect to gauge transformations Lg − 1 L g for third-order hyperbolic linear partial differential operators on the plane. The operators are considered in a normalized form, in which they have the symbol Sym L  = (pX + qY)XY for some non-zero bivariate functions p and q. For this normalized form, explicit formulae are given. The paper generalizes a previous result for the special, but important, case p = q = 1.

Keywords

Linear Partial Differential Operators Invariants Gauge transformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, I., Kamran, N.: The Variational Bicomplex for Hyperbolic Second-Order Scalar Partial Differential Equations in the Plane. Duke J. Math. 87, 265–319 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Darboux, G.: Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, vol. 2. Gauthier-Villars (1889)Google Scholar
  3. 3.
    Ibragimov, N.: Invariants of hyperbolic equations: Solution of the Laplace problem. Prikladnaya Mekhanika i Tekhnicheskaya Fizika 45(2), 11–21 (2004), English Translation in Journal of Applied Mechanics and Technical Physics 45(2), 158166 (2004)Google Scholar
  4. 4.
    Kartashova, E.: Hierarchy of general invariants for bivariate LPDOs. J. Theoretical and Mathematical Physics, 1–8 (2006)Google Scholar
  5. 5.
    Morozov, O.: Contact Equivalence Problem for Linear Hyperbolic Equations. In: arxiv.org/preprintmath-ph/0406004
  6. 6.
    Shemyakova, E.: A Full System of Invariants for Third-Order Linear Partial Differential Operators. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 973–978. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Shemyakova, E., Winkler, F.: Obstacles to the Factorization of Linear Partial Differential Operators into Several Factors. Programming and Computer Software 2 (accepted, 2007)Google Scholar
  8. 8.
    Tsarev, S.P.: Generalized Laplace Transformations and Integration of Hyperbolic Systems of Linear Partial Differential Equations. In: Proc. ISSAC 2005 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ekaterina Shemyakova
    • 1
  • Franz Winkler
    • 1
  1. 1.Research Institute for Symbolic Computation (RISC), J.Kepler University, Altenbergerstr. 69, A-4040 LinzAustria

Personalised recommendations