Properties of the Liapunov Stability Zones of the Lagrange Triangle

  • E. A. Grebenikov
  • D. Kozak-Skoworodkin
  • N. I. Zemtsova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4770)


We derived the quantitative estimates for geometrical parameters of the stability domains of the Lagrange triangle in the restricted three-body problem. We have shown that these domains are plane ellipse-similar figures, extended along a tangent to a circle, on which the Lagrange triangular solutions are located. We have proposed the heuristic algorithm for finding the maximal sizes of the stability domains.


Hamiltonian System Stability Domain Order Resonance Nauk USSR Lagrange Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Euler, L.: De motu rectilineo trium corporum se mutuo attrahentium. Nov. Comm. Petrop. 11, 144 (1765)Google Scholar
  2. 2.
    Lagrange, G.: The Analytical Mechanics (in Russian). vol. 1–2. Nauka, Moscow (1952–1953)Google Scholar
  3. 3.
    Szebehely, V.: Theory of Orbits. In: The Restricted Problem of Three Bodies, Academic Press, New York, London (1967)Google Scholar
  4. 4.
    Kolmogorov, A.N.: On the conservation of quasi-periodic motions for a small change in the Hamiltonian function (in Russian). Dokl. Akad. Nauk USSR 98(4), 527–530 (1954)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Arnold, V.I.: On stability of equilibrium positions of the Hamiltonian system of ordinary differential equations in general elliptic case (in Russian). Dokl. Akad. Nauk USSR 137(2), 255–257 (1961)Google Scholar
  6. 6.
    Moser, J.K.: Lectures on Hamiltonian Systems. Courant Institute of Mathematical Science, New York (1968)Google Scholar
  7. 7.
    Samoilenko, A.M.: To a question on structure of trajectories on a tour (in Russian). Ukrainian Math. J. 16(6) (1964)Google Scholar
  8. 8.
    Arnold, V.I.: Additional Chapters of the Theory of Ordinary Differential Equations (in Russian). Nauka, Moscow (1978)Google Scholar
  9. 9.
    Liapunov, A.M.: General Problem of Motion Stability (in Russian). Academy of Sciences of the USSR, Moscow (1954)Google Scholar
  10. 10.
    Markeev, A.P.: Libration Points in Celestial Mechanics and Cosmodynamics (in Russian). Nauka, Moscow (1978)Google Scholar
  11. 11.
    Sokol’sky, A.G.: On stability of the Hamiltonian autonomous system with the first order resonance (in Russian). J. Appl. Math. & Mech. 39(2), 366–369 (1975)Google Scholar
  12. 12.
    Wolfram, S.: The Mathematica Book, 4th edn. Wolfram Media/Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  13. 13.
    Abalakin, V.K., Aksenov, E.P., Grebenikov, E.A., Demin, V.G., Ryabov, Y.A.: Handbook on Celestial Mechanics and Astrodynamics (in Russian). Nauka, Moscow (1976)Google Scholar
  14. 14.
    Routh, E.I.: Proceedings of the London Mathematical Society 6 (1875)Google Scholar
  15. 15.
    Deprit, A.: Limiting orbits around the equilateral centers of libration. Astron. J. 71(2), 77–87 (1966)CrossRefGoogle Scholar
  16. 16.
    Leontovich, A.M.: On stability of Lagrange periodic solutions in the restricted three-body problem (in Russian). Dokl. Akad. Nauk USSR 143(3), 525–528 (1962)Google Scholar
  17. 17.
    Grebenicov, E.A., Kozak-Skovorodkin, D., Diarova, D.M.: Numerical study of stability domains of Hamiltonian equation solutions. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 178–191. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • E. A. Grebenikov
    • 1
  • D. Kozak-Skoworodkin
    • 2
  • N. I. Zemtsova
    • 1
  1. 1.Dorodnicyn Computing Center of RAS, Vavilova str. 40, 119991 MoscowRussia
  2. 2.University of PodlasiePoland

Personalised recommendations