Database Implementation of a Model-Free Classifier

  • Konstantinos Morfonios
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4690)


Most methods proposed so far for classification of high-dimensional data are memory-based and obtain a model of the data classes through training before actually performing any classification. As a result, these methods are ineffective on (a) very large datasets stored in databases or data warehouses, (b) data whose partitioning into classes cannot be captured by global models and is sensitive to local characteristics, and (c) data that arrives continuously to the system with pre-classified and unclassified instances mutually interleaved and whose successful classification is sensitive to using the most complete and/or most up-to-date information. In this paper, we propose LOCUS, a scalable model-free classifier that overcomes these problems. LOCUS is based on ideas from pattern recognition and is shown to converge to the optimal Bayes classifier as the size of the datasets involved increases. Moreover, LOCUS is data-scalable and can be implemented using standard SQL over arbitrary database tables. To the best of our knowledge, LOCUS is the first classifier that combines all the characteristics above. We demonstrate the effectiveness of LOCUS through experiments over both real-world and synthetic datasets, comparing it against memory-based decision trees. The results indicate an overall superiority of LOCUS over decision trees on both classification accuracy and data sizes that it can handle.


Lazy Classification Scalable Classification Disk-Based Classification Optimal Bayes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Ghosh, S.P., Imielinski, T., Iyer, B.R., Swami, A.N.: An Interval Classifier for Database Mining Applications. In: VLDB 1992  (1992)Google Scholar
  2. 2.
    Agrawal, R., Imielinski, T., Swami, A.N.: Database Mining: A Performance Perspective. IEEE Trans. Knowl. Data Eng. 5(6), 914–925 (1993)CrossRefGoogle Scholar
  3. 3.
    Aha, D.W., Kibler, D.F., Albert, M.K.: Instance-Based Learning Algorithms. Machine Learning 6, 37–66 (1991)Google Scholar
  4. 4.
    Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When Is “Nearest Neighbor” Meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)CrossRefGoogle Scholar
  6. 6.
    Chen, M.S., Han, J., Yu, P.S.: Data Mining: An Overview from a Database Perspective. IEEE Trans. Knowl. Data Eng. 8(6), 866–883 (1996)CrossRefGoogle Scholar
  7. 7.
    Friedman, J.H., Kohavi, R., Yun, Y.: Lazy Decision Trees. In: AAAI/IAAI, vol. 1, pp. 717–724 (1996)Google Scholar
  8. 8.
    Gehrke, J., Ganti, V., Ramakrishnan, R., Loh, W.Y.: BOAT-Optimistic Decision Tree Construction. In: SIGMOD 1999 (1999)Google Scholar
  9. 9.
    Gehrke, J., Ramakrishnan, R., Ganti, V.: RainForest - A Framework for Fast Decision Tree Construction of Large Datasets. In: VLDB 1998 (1998)Google Scholar
  10. 10.
    John, G.H., Lent, B.: SIPping from the Data Firehose. In: KDD 1997 (1997)Google Scholar
  11. 11.
    Kamber, M., Winstone, L., Gon, W., Han, J.: Generalization and Decision Tree Induction: Efficient Classification in Data Mining. In: RIDE 1997 (1997)Google Scholar
  12. 12.
    Katayama, N., Satoh, S.: The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor Queries. In: SIGMOD 1997 (1997)Google Scholar
  13. 13.
    Mehta, M., Agrawal, R., Rissanen, J.: SLIQ: A Fast Scalable Classifier for Data Mining. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Melli, G.: A Lazy Model-Based Algorithm for On-Line Classification. In: Zhong, N., Zhou, L. (eds.) Methodologies for Knowledge Discovery and Data Mining. LNCS (LNAI), vol. 1574, Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Mitchel, T.: Machine Learning. McGraw-Hill, New York (1997)Google Scholar
  16. 16.
    Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases,
  17. 17.
    Provost, F.J., Kolluri, V.: A Survey of Methods for Scaling Up Inductive Algorithms. Data Min. Knowl. Discov. 3(2), 131–169 (1999)CrossRefGoogle Scholar
  18. 18.
    Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  19. 19.
    Shafer, J.C., Agrawal, R., Mehta, M.: SPRINT: A Scalable Parallel Classifier for Data Mining. In: VLDB 1996 (1996)Google Scholar
  20. 20.
    Shaft, U., Ramakrishnan, R.: When Is Nearest Neighbors Indexable? In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press, London (2005)Google Scholar
  22. 22.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  23. 23.
    Yu, H., Yang, J., Han, J.: Classifying large data sets using SVMs with hierarchical clusters. In: KDD 2003 (2003)Google Scholar
  24. 24.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An Efficient Data Clustering Method for Very Large Databases. In: SIGMOD 1996 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Konstantinos Morfonios
    • 1
  1. 1.Department of Informatics and Telecommunications, University of Athens 

Personalised recommendations