Advertisement

A Fixpoint Approach to State Generation for Stratifiable Disjunctive Deductive Databases

  • Andreas Behrend
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4690)

Abstract

In this paper we present a new fixpoint-based approach to bottom-up state generation for stratifiable disjunctive deductive databases. To this end, a new consequence operator based on hyperresolution is introduced which extends Minker’s operator for positive disjunctive Datalog rules. In contrast to already existing model generation methods our approach for efficiently computing perfect models is based on state generation. Additionally, it enhances model state computation based on Minker’s operator for positive disjunctive Datalog rules.

Keywords

Deductive Databases Disjunctive Datalog View Updating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge. In: Foundations of Deductive Databases and Logic Programming. ch. 2, pp. 89–148. Morgan Kaufmann Publishers, San Francisco (1988)Google Scholar
  2. 2.
    Apt, K.R.: Logic Programming. In: Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B, pp. 493–574. The MIT Press, Cambridge (1990)Google Scholar
  3. 3.
    Chan, E.P.F.: A Possible World Semantics for Disjunctive Databases. IEEE Transactions on Knowledge and Data Engineering 5(2), 282–292 (1993)CrossRefGoogle Scholar
  4. 4.
    Behrend, A.: A Fixpoint Approach to State Generation for Stratifiable Disjunctive Deductive Databases. Technical Report IAI-TR-2006-7, Institut für Informatik III, Universität Bonn (December 2006)Google Scholar
  5. 5.
    Baral, C., Lobo, J., Minker, J.: Generalized Well-founded Semantics for Logic Programs (Extended Abstract). In: Stickel, M.E. (ed.) 10th International Conference on Automated Deduction. LNCS, vol. 449, pp. 102–116. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  7. 7.
    Eiter, T., Gottlob, G., Mannila, H.: Adding Disjunction to Datalog. In: PODS 1994, pp. 267–278 (1994)Google Scholar
  8. 8.
    Fernández, J.A., Minker, J.: Bottom-Up Evaluation of Hierarchical Disjunctive Deductive Databases. In: ICLP 1991, pp. 660–675 (1991)Google Scholar
  9. 9.
    Fernández, J.A., Minker, J.: Bottom-Up Compuation of Perfect Models for Disjunctive Theories. Journal of Logic Programming 25(1), 33–51 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Sakama, C., Inoue, K.: Updating Extended Logic Programs through Abduction. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 147–161. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Lobo, J., Minker, J., Rajasekar, A.: Extending the Semantics of Logic Programs to Disjunctive Logic Programs. In: ICLP 1989, pp. 255–267 (1989)Google Scholar
  12. 12.
    Lobo, J., Minker, J., Rajasekar, A.: Foundations of Disjunctive Logic Programming. MIT Press, Cambridge, Massachusetts (1992)Google Scholar
  13. 13.
    Minker, J.: On Indefinite Databases and the Closed World Assumption. In: Loveland, D.W. (ed.) 6th Conference on Automated Deduction. LNCS, vol. 138, pp. 292–308. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  14. 14.
    Minker, J., Rajasekar, A.: A Fixpoint Semantics for Disjunctive Logic Programs. Journal of Logic Programming 9(1), 45–74 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Przymusinski, T.C.: On the Declarative Semantics of Deductive Databases and Logic Programs. In: Foundations of Deductive Databases and Logic Programming, pp. 193–216. Morgan Kaufmann, San Francisco (1988)Google Scholar
  16. 16.
    Przymusinski, T.C.: Stable Semantics for Disjunctive Programs. New Generation Computing 9(3/4), 401–424 (1991)CrossRefGoogle Scholar
  17. 17.
    Robinson, J.: Automated Deduction with Hyper-Resolution. International Journal of Computer Mathematics 1, 227–234 (1965)zbMATHGoogle Scholar
  18. 18.
    Sakama, C.: Possible Model Semantics for Disjunctive Databases. In: DOOD 1989, pp. 369–383 (1989)Google Scholar
  19. 19.
    Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working Models for Uncertain Data. In: ICDE 2006 (2006)Google Scholar
  20. 20.
    Seipel, D., Minker, J., Ruiz, C.: Model Generation and State Generation for Disjunctive Logic Programs. Journal of Logic Programming 32(1), 49–69 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Seipel, D., Thöne, H.: DISLOG - A System for Reasoning in Disjunctive Deductive Databases. In: DAISD 1994, pp. 325–343 (1994)Google Scholar
  22. 22.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General Logic Programs. Journal of the ACM 38(3), 620–650 (1991)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andreas Behrend
    • 1
  1. 1.University of Bonn, Institute of Computer Science III, Römerstr. 164, D-53117 BonnGermany

Personalised recommendations