Skip to main content

Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 4714)

Abstract

Process Mining is a technique for extracting process models from execution logs. This is particularly useful in situations where people have an idealized view of reality. Real-life processes turn out to be less structured than people tend to believe. Unfortunately, traditional process mining approaches have problems dealing with unstructured processes. The discovered models are often “spaghetti-like”, showing all details without distinguishing what is important and what is not. This paper proposes a new process mining approach to overcome this problem. The approach is configurable and allows for different faithfully simplified views of a particular process. To do this, the concept of a roadmap is used as a metaphor. Just like different roadmaps provide suitable abstractions of reality, process models should provide meaningful abstractions of operational processes encountered in domains ranging from healthcare and logistics to web services and public administration.

Keywords

  • Process Mining
  • Mining Algorithm
  • Event Class
  • Precedence Relation
  • Graph Cluster

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-75183-0_24
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-75183-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)

    CrossRef  Google Scholar 

  2. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)

    CrossRef  Google Scholar 

  3. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Sixth International Conference on Extending Database Technology, pp. 469–483 (1998)

    Google Scholar 

  4. Badouel, E., Bernardinello, L., Darondeau, P.: The Synthesis Problem for Elementary Net Systems is NP-complete. Theoretical Computer Science 186(1-2), 107–134 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)

    CrossRef  Google Scholar 

  6. Datta, A.: Automating the Discovery of As-Is Business Process Models: Probabilistic and Algorithmic Approaches. Information Systems Research 9(3), 275–301 (1998)

    CrossRef  Google Scholar 

  7. van Dongen, B.F., van der Aalst, W.M.P.: Multi-Phase Process Mining: Building Instance Graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)

    Google Scholar 

  8. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: A New Era in Process Mining Tool Support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)

    Google Scholar 

  9. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht (2000)

    Google Scholar 

  10. Herbst, J.: A Machine Learning Approach to Workflow Management. In: López de Mántaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  11. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    CrossRef  Google Scholar 

  12. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process Mining: A Basic Approach and its Challenges. In: Bussler, C., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 203–215. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  13. Pothen, A., Simon, H.D., Liou, K.: Partitioning sparse matrics with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Günther, C.W., van der Aalst, W.M.P. (2007). Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds) Business Process Management. BPM 2007. Lecture Notes in Computer Science, vol 4714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75183-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75183-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75182-3

  • Online ISBN: 978-3-540-75183-0

  • eBook Packages: Computer ScienceComputer Science (R0)