Skip to main content

Trajectory databases is an important research area that has received a lot of interest in the last decade. The objective of trajectory databases is to extend database technology to support the representation and querying of moving objects and their trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Abraham and J.F. Roddick. Survey of spatio-temporal databases. Geoinformatica, 3(1):61–99, 1999.

    Article  Google Scholar 

  2. J.F. Allen. Maintaining knowledge about temporal intervals. Communications ACM, 26(11):832–843, 1983.

    Article  MATH  Google Scholar 

  3. V.T. de Almeida and R.H. Güting. Supporting uncertainty in moving objects in network databases. In Proceedings of the 13th International Symposium on Geographic Information Systems (GIS’05), pp. 31–40, ACM, 2005.

    Google Scholar 

  4. V.T. Almeida, R.H. Güting, and T. Behr. Querying moving objects in secondo. In Proceedings of Mobile Data Management (MDM’06), p. 47, 2006.

    Google Scholar 

  5. P. Bakalov, M. Hadjieleftheriou, E.J. Keogh, and V.J. Tsotras. Efficient trajectory joins using symbolic representations. In Proceedings of Mobile Data Management (MDM’05), pp. 86–93, 2005.

    Google Scholar 

  6. P. Bakalov, M. Hadjieleftheriou, and V.J. Tsotras. Time Relaxed Spatiotemporal Trajectory Joins. In Proceedings of the 13th Annual International Workshop on Geographic Information Systems (GIS’05), pp. 182–191, 2005.

    Google Scholar 

  7. Y. Bédard. Visual modeling of spatial databases: Towards spatial pvl and uml. Geomatica, 53:169–185, 1999.

    Google Scholar 

  8. Y. Bédard, S. Larrivée, M.-J. Proulx, and M. Nadeau. Modeling Geospatial Databases with Plug-Ins for Visual Languages: A Pragmatic Approach and the Impacts of 16 years of Research and Experimentations on Perceptory. In Conceptual Modeling for Advanced Application Domains, Vol. 3289, pp. 17–30. Springer, Berlin Heidelberg New York, 2004.

    Google Scholar 

  9. J. Bochnak, M. Coste, and M. Roy. Géométrie Algébrique Réelle. Springer, Berlin Heidelberg New York, 1987.

    MATH  Google Scholar 

  10. Boosting location-based services with a moving object database engine. In Proceedings of the 5th Workshop on Data Engineering for Wireless and Mobile Access (MobiDE’06).

    Google Scholar 

  11. K. Borges, C. Davis, and A. Laender. Omt-g: An object-oriented data model for geographic applications. GeoInformatica, 5:221–260, 2001.

    Article  MATH  Google Scholar 

  12. J. Brodeur, Y. Bédard, and M.-J. Proulx. Modelling Geospatial Application Database Using Uml-Based Repositories Aligned with International Standards in Geomatics. In ACM, editor, Proceedings of the 8th International Symposium on Geographic Information Systems (GIS’00), pp. 39–46, 2000.

    Google Scholar 

  13. E. Camossi, M. Bertolotto, E. Bertino, and G. Guerrini. A Multigranular Spatiotemporal Data Model. In Proceedings of the 11th International Symposium on Geographic Information Systems (GIS’03), pp. 94–101, ACM, 2003.

    Google Scholar 

  14. E. Camossi, M. Bertolotto, and E. Bertino. A flexible approach to spatio-temporal multigranularity in an object data model. International Journal of Geographical Information Science, 20(5), 2006.

    Google Scholar 

  15. L. Chen, T. Özsu, and V. Oria. Robust and Fast Similarity Search for Moving Object Trajectories. In F. Ozcan (ed.), Proceedings of the International Conference on Management of Data (SIGMOD’05), pp. 491–502. ACM, 2005.

    Google Scholar 

  16. H. Darwen. Valid Time and Transaction Time Proposals: Language Design Aspects. In Temporal Databases: Research and Practice, LNCS 1399, pp. 195–210, 1998.

    Google Scholar 

  17. C. Date, H. Darwen, and N. Lorentzos. Temporal Data and the Relational Model. Model, Morgan Kaufmann, 2003.

    Google Scholar 

  18. S. Dieker and R.H. Güting. Plug and play with query algebras: secondo - a generic dbms development environment. In Proceedings of the International Symposium on Database Engineering & Applications (IDEAS ’00), pp. 380–392. IEEE Computer Society, 2000.

    Google Scholar 

  19. M.J. Egenhofer. Approximations of geospatial lifelines. 2003.

    Google Scholar 

  20. M.J. Egenhofer and R.D. Franzosa. Point set topological relations. International Journal of Geographical Information Systems, 5:161–174, 1991.

    Article  Google Scholar 

  21. B. El-Geresy and C. Jones. Five Questions to Answer in Time: A Critical Survey of Approaches to Modelling in Spatio-Temporal GIS, Chap. 3. GIS and Geocomputation-Innovations in GIS 7. Taylor & Francis, London, 2000

    Google Scholar 

  22. M. Erwig, R.H. Güting, M. Schneider, and M. Vazirgiannis. Spatio-temporal data types: An approach to modeling and querying moving objects in databases. GeoInformatica, 3(3):269–296, 1999.

    Article  Google Scholar 

  23. M. Erwig and M. Schneider. Developments in Spatio-Temporal Query Languages. In Proceedings of 10th International Conference and Workshop on Database and Expert Systems Applications (DEXA’99), pp. 441–449, 1999.

    Google Scholar 

  24. M. Erwig and M. Schneider. Spatio-temporal predicates. IEEE Transaction Knowledge Data Engeneering, 14(4):881–901, 2002.

    Article  Google Scholar 

  25. L. Forlizzi, R.H. Güting, E. Nardelli, and M. Schneider. A Data Model and Data Structures for Moving Objects Databases. In Proceedings of the International Conference on Management of Data (SIGMOD’00), pp. 319–330, 2000.

    Google Scholar 

  26. E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis. Nearest Neighbor Search on Moving Object Trajectories. In Proceedings of 9th International Symposium on Advances in Spatial and Temporal Databases (SSTD’01), Vol. 3633. Lecture Notes in Computer Science, pp. 328–345. Springer, Berlin Heidelberg New York, 2005.

    Google Scholar 

  27. F. Geerts. Moving Objects and their Equations of Motion. In Proceedings of the 1st International Symposium on Applications of Constraint Databases, volume 3074 of Lecture Notes in Computer Science, pp. 41–52. Springer, Berlin Heidelberg New York, 2004.

    Google Scholar 

  28. T. Griffiths, A. Fernandes, N. Paton, and R. Barr. The tripod spatio-historical data model. Data and Knowledge Engineering, 49:23–65, 2004.

    Article  Google Scholar 

  29. S. Grumbach, M. Koubarakis, P. Rigaux, M. Scholl, and S. Skiadopoulos. Spatio-temporal Models and Languages: An Approach Based on Constraints, Chap. 5, pp. 177–201, 2003.

    Google Scholar 

  30. R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider, and M. Vazirgiannis. A foundation for representing and quering moving objects. ACM Transactions on Database System, 25(1):1–42, 2000.

    Article  Google Scholar 

  31. R. Guting, M. Bohlen, M. Erwig, C. Jensen, M. Schneider, N. Lorentzos, E. Nardelli, M. Schneider, and J. Viqueira. Spatio-Temporal Models and Languages: An Approach Based on Data Types. In Spatio-Temporal Databases: The Chorochronos Approach, LNCS 2520, Chap. 4, pp. 117–176, 2003.

    Google Scholar 

  32. M.A. Hammad, W.G. Aref, and A.K. Elmagarmid. Stream Window Join: Tracking Moving Objects in Sensor-Network Databases. In Proceedings of 15th International Conference on Scientific and Statistical Database Management (SSDBM’03), pp. 75–84, 2003.

    Google Scholar 

  33. K. Hornsby and M.J. Egenhofer. Modeling moving objects over multiple granularities. Annual Mathematics Artificial Intelligence, 36(1–2):177–194, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  34. B. Huang and C. Claramunt. Stoql: An ODMG-Based Spatio-Temporal Object Model and Query Language. In Proceedings of the 10th International Symposium on Spatial Data Handling (SDH’02), pp. 225–237, 2002.

    Google Scholar 

  35. ISO/IEC. Information Technology – Database languages – SQL – Part 7: Temporal (SQL/Foundation). ISO/IEC 9075-2 Working Draft. ISO, 2001.

    Google Scholar 

  36. ISO/TC211. Geographic Information and Temporal Schema. ISO 19108:2002. ISO, 2002.

    Google Scholar 

  37. ISO/TC211. Geographic Information and Spatial Schema. ISO 19107:2003. ISO, 2003.

    Google Scholar 

  38. I. Kakoudakis. The Tau Temporal Object Model, M.Sc. Thesis, Umist, 1996.

    Google Scholar 

  39. P.C. Kanellakis, G.M. Kuper, and P. Revesz. Constraint query languages. Journal of Computer and System Sciences, 51:26–52, 1995.

    Article  MathSciNet  Google Scholar 

  40. V. Khatri, S. Ram, and R. Snodgrass. Augmenting a Conceptual Model with Geospatiotemporal Annotations. IEEE Transactions on Knowledge and Data Engineering, 16:1324–1338, 2004.

    Article  Google Scholar 

  41. B. Kuijpers, J. Paredaens, and D.V. Gucht. Towards a theory of movie database queries. In Proceedings of the 7th International Workshop on Temporal Representation and Reasoning (TIME’00), pp. 95–102. IEEE Computer Society, 2000.

    Google Scholar 

  42. G. Kuper, L. Libkin, and J. Paredaens. Constraint Databases. Springer, Berlin Heidelberg New York, 2000.

    MATH  Google Scholar 

  43. S. Larrivée, Y. Bédard, and J. Pouliot. How to Enrich the Semantics of Geospatial Databases by Properly Expressing 3d Objects in a Conceptual Model. In Proceedings of the Workshops On The Move to Meaningful Internet Systems, number 3762 in LNCS. Springer, Berlin Heidelberg New York, 2005.

    Google Scholar 

  44. J.A.C. Lema, L. Forlizzi, R.H. Güting, E. Nardelli, and M. Schneider. Algorithms for moving objects databases. The Computer Journal, 46(6):680–712, 2003.

    Article  MATH  Google Scholar 

  45. M.F. Mokbel, X. Xiong, W.G. Aref, S.E. Hambrusch, S. Prabhakar, and M.A. Hammad. Place: A Query Processor for Handling Real-Time Spatio-Temporal Data Streams. In Proceedings of 30th International Conference on Very Large Data Bases (VLDB’04), pp. 1377–1380, 2004.

    Google Scholar 

  46. M.F. Mokbel, X. Xiong, M.A. Hammad, and W.G. Aref. Continuous query processing of spatio-temporal data streams in place. GeoInformatica, 9(4):343–365, 2005.

    Article  Google Scholar 

  47. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query Processing in Spatial Network Databases. In Proceedings of 29th International Conference on Very Large Data Bases (VLDB’03), pp. 802–813, 2003.

    Google Scholar 

  48. D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest neighbor queries. In Proceedings of the 20th International Conference on Data Engineering (ICDE’04), pp. 301–312. IEEE Computer Society, 2004.

    Google Scholar 

  49. J. Paredaens, G. Kuper, and L. Libkin, editors. Constraint databases. Springer, Berlin Heidelberg New York, 2000.

    MATH  Google Scholar 

  50. C. Parent. A Framework for Characterizing Spatio-Temporal Data Models. In S.S. Y. Masunaga (ed.), Advances in Multimedia and Databases for the New Century, pp. 89–97. World Scientific, Singapore, 2000.

    Google Scholar 

  51. K. Patroumpas and T.K. Sellis. Managing Trajectories of Moving Objects as Data Streams. In J. Sander and M.A. Nascimento, editors, Proceedings of 2nd International Workshop on Spatio-Temporal Database Management (STDBM’04), pp. 41–48, 2004.

    Google Scholar 

  52. N. Pelekis. STAU: A Spatio-Temporal Extension to ORACLE DBMS. Ph.D. Thesis, 2002.

    Google Scholar 

  53. N. Pelekis, B. Theodoulidis, I. Kopanakis, and Y. Theodoridis. Literature review of spatio-temporal database models. Knowledge Engeneering Review, 19(3):235–274, 2004.

    Google Scholar 

  54. N. Pelekis, B. Theodoulidis, Y. Theodoridis, and I. Kopanakis. An Oracle data cartridge for moving objects, laboratory of information systems, department of informatics, university of piraeus, unipi-isl-tr-2005-01, 2005. http://isl.cs.unipi.gr/db/publications.html.

  55. N. Pelekis, Y. Theodoridis, S. Vosinakis, and T. Panayiotopoulos. Hermes – A Framework for Location-Based Data Management. In Proceedings of 10th International Conference on Extending Database Technology (EDBT’06), pp. 1130–1134, 2006.

    Google Scholar 

  56. D.J. Peuquet. Making space for time: Issues in space-time data representation. Geoinformatica, 5(1):11–32, 2001.

    Article  MATH  Google Scholar 

  57. D. Pfoser. Indexing the trajectories of moving objects. IEEE Data Engeneering Bullettin, 25(2):3–9, 2002.

    Google Scholar 

  58. D. Pfoser and C.S. Jensen. Capturing the uncertainty of moving-object representations. In R.H. Güting, D. Papadias, and F.H. Lochovsky, (eds.), Proceedings of the 6th International Symposium on Advances in Spatial Databases (SSD’99), Vol. 1651. Lecture Notes in Computer Science, pp. 111–132. Springer, Berlin Heidelberg New York, 1999.

    Google Scholar 

  59. D. Pfoser, C.S. Jensen, and Y. Theodoridis. Novel Approaches in Query Processing for Moving Object Trajectories. In Proceedings of 26th International Conference on Very Large Data Bases (VLDB’00), pp. 395–406, 2000.

    Google Scholar 

  60. R. Price, N. Tryfona, and C. Jensen. Extended spatiotemporal uml: Motivations, requirements, and constructs. In Journal of Database Management, 11:14–27, 2000.

    Google Scholar 

  61. R. Price, N. Tryfona, and C. Jensen. Extending UML for Space- and Time-Dependent Applications. Idea Group Publishing, 2002.

    Google Scholar 

  62. S. Ram, R. Snodgrass, V. Khatri, and Y. Hwang. DISTIL: A Design Support Environment for Conceptual Modeling of Spatio-temporal Requirements, pp. 70–83. 2001.

    Google Scholar 

  63. P. Rigaux, M. Scholla, L. Segoufin, and S. Grumbach. Building a constraintbased spatial database system: Model, languages, and implementation. Information Systems, 28:563–595, 2003.

    Article  MATH  Google Scholar 

  64. A.P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving Objects. In Proceedings of the 13th International Conference on Data Engineering (ICDE’97), pp. 422–432. IEEE Computer Society, 1997.

    Google Scholar 

  65. R. Snodgrass, M. Böhlen, C. Jensen, and N. Kline. Adding valid time to SQL/Temporal. ANSI X3H2-96-501r2, ISO/IEC JTC1/SC21/WG3 DBL MAD-146r2, 1996.

    Google Scholar 

  66. R. Snodgrass, M. Böhlen, C. Jensen, and A. Steiner. Adding transaction time to SQL/ Temporal: Temporal change proposal. ANSI X3H2-96-152r, ISO-ANSI SQL/ISO/IECJTC1/ SC21/WG3 DBL MCI-143. ISO, 1996.

    Google Scholar 

  67. R. Snodgrass, M. Böhlen, C. Jensen, and A. Steiner. Transitioning Temporal Support in tsql2 to sql3. In Temporal Databases: Research and Practice, LNCS 1399, pp. 150–194, 1998.

    Google Scholar 

  68. Spatio-Temporal Databases: The CHOROCHRONOS Approach, Vol. 2520 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg New York, 2003.

    Google Scholar 

  69. J. Su, H. Xu, and O.H. Ibarra. Moving Objects: Logical Relationships and Queries. In C.S. Jensen, M. Schneider, B. Seeger, and V.J. Tsotras, editors, Proceedings of 7th International Symposium on Advances in Spatial and Temporal Databases (SSTD’01), volume 2121 of Lecture Notes in Computer Science, pp. 3–19. Springer, Berlin Heidelberg New York, 2001.

    Google Scholar 

  70. Y. Theodoridis. Ten benchmark database queries for location-based services. The Computer Journal, 46(6):713–725, 2003.

    Article  MATH  Google Scholar 

  71. G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. Managing uncertainty in moving objects databases. ACM Transactions Database System, 29(3):463–507, 2004.

    Article  Google Scholar 

  72. N. Tryfona and C. Jensen. Conceptual data modeling for spatiotemporal applications. GeoInformatica, 3:245–268, 1999.

    Article  Google Scholar 

  73. N. Tryfona, R. Price, and C. Price. Spatiotemporal Conceptual Modeling., chapter 3, pp. 79–116, Berlin, 2003.

    Google Scholar 

  74. M. Vlachos, D. Gunopulos, and G. Kollios. Discovering Similar Multidimensional Trajectories. In Proceedings of the 18th International Conference on Data Engineering (ICDE’02), pp. 673–684. IEEE Computer Society, 2002.

    Google Scholar 

  75. N.V. de Weghe, F. Witlox, A.G. Cohn, T. Neutens, and P.D. Maeyer. Efficient storage of interactions between multiple moving point objects. In OTM Workshops (2), pp. 1636–1647, 2006.

    Google Scholar 

  76. O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving Objects Databases: Issues and Solutions. In Proceedings of the 10th International Conference on Scientific and Statistical Database Management (SSDBM’98), pp. 111–122, IEEE Computer Society, 1998.

    Google Scholar 

  77. O. Wolfson, A.P. Sistla, S. Chamberlain, and Y. Yesha. Updating and querying databases that track mobile units. Distributed and Parallel Databases, 7(3):257–387, 1999.

    Article  Google Scholar 

  78. J. Zhang and M. Goodchild. Uncertainty in Geographical Information. Taylor & Francis, New York, 2002.

    Google Scholar 

  79. E. Zimanyi, C. Parent, and S. Spaccapietra. Conceptual Modeling for Traditional and Spatio-Temporal Applications – The MADS Approach. Springer, Berlin Heidelberg New York, 2006.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Macedo, J. et al. (2008). Trajectory Data Models. In: Giannotti, F., Pedreschi, D. (eds) Mobility, Data Mining and Privacy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75177-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75177-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75176-2

  • Online ISBN: 978-3-540-75177-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics