Skip to main content

Stochastic Simulation of Biological Systems with Dynamical Compartment Structure

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4695))

Abstract

The Gillespie stochastic simulation algorithm represents one of the main physical abstractions exploited for the simulation of biological systems modeled by means of concurrent calculi. While the faithful modelling of bio-systems often requires multi-compartment semantics, the original Gillespie algorithm considers only one fixed-size volume. In this paper we introduce an extended formalisation of the above algorithm which preserves the original model but allows the stochastic simulation in presence of multiple compartments with dynamical structure and variable sizes. The presented algorithm can be then used as basis for simulating systems expressed in an extended version of the stochastic π-Calculus, the Sπ@ language, obtained by means of polyadic synchronisation. Despite of its conservativeness, Sπ@ is showed to allow flexible modelling of multiple compartments with dynamical structure and to provide increased biological faithfulness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Pacific Symposium on Biocomputing, pp. 459–470 (2001)

    Google Scholar 

  2. Priami, C., Regev, A., Shapiro, E.Y., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Process. Lett. 80(1), 25–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.Y.: Bioambients: an abstraction for biological compartments. Theor. Comput. Sci. 325(1), 141–167 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. In: Bioconcur 2004, ENTCS (2004)

    Google Scholar 

  5. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  6. Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

    Google Scholar 

  7. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)

    Google Scholar 

  8. Cazzaniga, P., Pescini, D., Romero-Campero, F.J., Besozzi, D., Mauri, G.: Stochastic approaches in P systems for simulating biological systems. In: Gutiérrez-Naranjo, M.A., Paun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Computing, Sevilla, Fénix Editora, January 30 - February 3, 2006, vol. I, pp. 145–164 (2006)

    Google Scholar 

  9. Versari, C.: A core calculus for a comparative analysis of bio-inspired calculi (2007), http://www.cs.unibo.it/~versari/files/cversari-esop07.pdf

  10. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i. Inf. Comput. 100(1), 1–40 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, ii. Inf. Comput. 100(1), 41–77 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University Press, New York, NY, USA (1999)

    Google Scholar 

  13. Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in pi-calculus. Nord. J. Comput. 10(2), 70–98 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Cleaveland, R., Lüttgen, G., Natarajan, V.: Priority in process algebra. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 711–765. Elsevier Science Publishers, Amsterdam (2001)

    Chapter  Google Scholar 

  15. Lodish, H., Berk, A., Matsudaira, P., Kaiser, C.A., Krieger, M., Scott, M.P., Zipursky, L., Darnell, J.: Molecular Cell Biology. W. H. Freeman, New York (2004)

    Google Scholar 

  16. Lu, T., Volfson, D., Tsimring, L., Hasty, J.: Cellular growth and division in the gillespie algorithm. In: Systems Biology, IEE Proceedings, pp. 121–128 (2004)

    Google Scholar 

  17. Lecca, P.: A time-dependent extension of gillespie algorithm for biochemical stochastic π-calculus. In: SAC 2006. Proceedings of the 2006 ACM symposium on Applied computing, New York, NY, USA, pp. 137–144. ACM Press, New York (2006)

    Chapter  Google Scholar 

  18. Elf, J., Ehrenberg, M.: Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Systems Biology 1(2), 230–236 (2004)

    Article  Google Scholar 

  19. Phillips, A., Cardelli, L., Castagna, G.: A graphical representation for biological processes in the stochastic pi-calculus, vol. 4230, pp. 123–152 (2006)

    Google Scholar 

  20. Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G.: Tau leaping stochastic simulation method in p systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 298–313. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. Journal of Chemical Physics 124(4) (2006)

    Google Scholar 

  22. Danos, V., Schachter, V. (eds.): CMSB 2004. LNCS (LNBI), vol. 3082, pp. 26–28. Springer, Heidelberg (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muffy Calder Stephen Gilmore

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Versari, C., Busi, N. (2007). Stochastic Simulation of Biological Systems with Dynamical Compartment Structure. In: Calder, M., Gilmore, S. (eds) Computational Methods in Systems Biology. CMSB 2007. Lecture Notes in Computer Science(), vol 4695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75140-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75140-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75139-7

  • Online ISBN: 978-3-540-75140-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics