Skip to main content

An Efficient Geometrical Model for Meshing Applications in Heterogeneous Environments

  • Conference paper
Proceedings of the 16th International Meshing Roundtable
  • 2240 Accesses

Abstract

This paper introduces a new neutral hybrid discrete (in the limit continuous) solid CAD model for meshing applications within the Integrated Computational Environments, based on subdivision surfaces. The model uses the Boundary Representation for the CAD model topology and the Butterfly Interpolating subdivision scheme for definition of underlying curves and surfaces. It is automatically derived from the original solid model, based on parametric surfaces, using a fast loop-traversal approach for identification of geometrical discontinuities. A curvature-based sizing function is introduced for generation of an optimal control mesh for subdivision surfaces. A new hybrid CAD model has significantly fewer faces, uses robust discrete structure, which simplifies computational meshing and geometrical model transfer within the heterogeneous components of computational environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Zienkiewicz and R. Taylor. The Finite Element Method, Volume 1, The Basis. Fifth Edition, Butterworth-Heinemann: Oxford, (2000).

    Google Scholar 

  2. A.A. Di Sessa. “Principle Design for an Integrated Computational Environment”, Human-Computer Interaction, 1(1):1-47, (1985).

    Google Scholar 

  3. A. Requicha, J. Rossignac. “Solid modelling and beyond”. IEEE Computer graphics and beyond, 12(5):31–44, (1992).

    Article  Google Scholar 

  4. L. Piegel, W. Tiller. “Curve and surface constructions using rational Bsplines”. Computer-Aided design, 19:485-498, (1987).

    Article  Google Scholar 

  5. Mezentsev, T. Woehler. “Methods and algorithms of automated CAD repair for incremental surface meshing”. Proceedings of the 8th International Meshing Roundtable; South Lake Tahoe, USA, (1999).

    Google Scholar 

  6. M. Beall, J. Walsh, M. Shepard. “Accessing CAD geometry for mesh generation.” Proceedings of the 12th International Meshing Roundtable; Santa Fe, USA, (2003).

    Google Scholar 

  7. R. Lohner. “Surface gridding from discrete data”. Proceedings of the 4th International Meshing Roundtable; Albuquerque, USA, (1995).

    Google Scholar 

  8. S. Owen, D. White. “Mesh-based geometry”. International Journal for Numerical Methods in Engineering; 58:375-395, (2003).

    Article  MATH  Google Scholar 

  9. P. Lang, H. Bourouchaki. “Interpolating and meshing 3D surface grids”. International Journal for Numerical Methods in Engineering; 58:209-225, (2003).

    Article  Google Scholar 

  10. P. Frey. “About surface remeshing”. Proceedings of the 9th International Meshing Roundtable, New Orleans, USA, (2000).

    Google Scholar 

  11. L. Kobbelt, T. Hesse, H. Prautzsch, K. Schweizerhof. “Iterative mesh generation for FE-computations on free form surfaces”. Engineering Computations, 14(7):806-820, (1997).

    Article  MATH  Google Scholar 

  12. D. Rypl, Z. Bittnar. “Discretization of 3D surfaces reconstructed by interpolating subdivision”. Proceedings of the 7th International Conference on Nu-merical Grid Generation in Computational Field Simulations. Whistler, Canada, pages 679-688, (2000).

    Google Scholar 

  13. C.K. Lee. “Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 1: Construction of underlying geometrical model”. International Journal for Numerical Methods in Engineering; 56: 1593-1614, (2003).

    Article  MATH  Google Scholar 

  14. C.K. Lee. “Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 2: Mesh generation algorithm and examples.” International Journal for Numerical Methods in Engineering; 56: 1615-1646, (2003).

    Article  MATH  Google Scholar 

  15. N. Dyn, D. Levin, J. Gregory. “A butterfly subdivision scheme for surface interpolation with tension control”. Proceedings of SIGGRAPH 90, Annual Conference series, ACM, SIGGRAPH 90, pages 160-169, 1990.

    Google Scholar 

  16. Mezentsev, A. Munjiza, J.-P. Latham. “Unstructured Computational Meshes for Subdivision Geometry Of Scanned Geological Objects”, Proceedings of the 14th International Meshing Roundtable, San Diego, California, USA, Springer, pages 73 – 89, (2005).

    Google Scholar 

  17. D. Zorin, P. Schroder, W. Sweldens. “Interpolating subdivision with arbitrary topology”. In Proceedings of SIGGRAPH 96,New Orleans, Annual Conference series, ACM SIGGRAPH, pages 189-192, (1996).

    Google Scholar 

  18. C. Loop. “Smooth subdivision surface, based on triangles”. Master Thesis. University of Utah, Department of Mathematics, (1987).

    Google Scholar 

  19. T.J. Baker. “Identification and preservation of surface features”. Proceedings of the 13th International Meshing Roundtable, Williamsburg, USA, pages 299-309, (2004).

    Google Scholar 

  20. S. Yamakawa, K. Shimada. “Polygon crawling: Feature-edge extraction from a general polygonal surface for mesh generation”. Proceedings of the 14th International Meshing Roundtable, San Diego, California, USA, Springer, pages 257 – 274, (2005).

    Google Scholar 

  21. Y. Lu, R. Gadh, T. Tautges. “Volume decomposition and feature recognition for hexahedral mesh generation”. Proceeding of the 8th International Meshing Roundtable; South Lake Tahoe, USA, pages 269-280, (1999).

    Google Scholar 

  22. “MezGen – An unstructured hybrid mesh generator with CAD interface”. http://cadmesh.homeunix.com, (2007).

    Google Scholar 

  23. D. Struik. Lectures on classical Differential geometry. Second edition, Dover Publications: Dover, UK, (1988).

    MATH  Google Scholar 

  24. Sheffer, E. de Sturler. “Surface parameterization for meshing by triangulation flattening”, Proceedings of the 9th International Meshing Roundtable, New Orleans, USA, (2000).

    Google Scholar 

  25. R.J. Cass, S.E. Benzley, R.J. Meyers, T.D. Blacker. “Generalized 3-D paving: An automated quadrilateral surface mesh generation algorithm”, International Journal for Numerical Methods in Engineering; 56: 1615-1646, (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mezentsev, A. (2008). An Efficient Geometrical Model for Meshing Applications in Heterogeneous Environments. In: Brewer, M.L., Marcum, D. (eds) Proceedings of the 16th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75103-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75103-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75102-1

  • Online ISBN: 978-3-540-75103-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics