Skip to main content

Human Error Analysis Based on a Semantically Defined Cognitive Pilot Model

  • Conference paper
Computer Safety, Reliability, and Security (SAFECOMP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4680))

Included in the following conference series:

Abstract

In this paper an approach to formal analysis of potential human errors in the interaction with mode-based systems in modern aircraft cockpits is presented. We developed a cognitive model of pilot behaviour that is integrated with system design models in order to predict human errors and the resulting safety impact due to cognitive adaptation to frequently experienced flight scenarios during pilot-cockpit interaction. The paper focuses on the definition of a formal semantics for the pilot model as a basis for formal verification of pilot-system interaction. It is shown how formal verification can support debugging formal specifications of nominal flight procedures as well as producing Human Error Fault Trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherry, L., Feary, M., Polson, P., Mumaw, R., Palmer, E.: A cognitive engineering analysis of the vertical navigation function. Technical report, NASA Ames Research Center (2001)

    Google Scholar 

  2. Lyall, B., Wilson, J.: Flight deck automation issues. Technical report, Oregon State University and Research Integrations, Incorporated (1997)

    Google Scholar 

  3. Norman, D.A.: The psychology of everyday things. Basic Books, New York (1988)

    Google Scholar 

  4. Rushby, J., Crow, J., Palmer, E.: An automated method to detect potential mode confusions. In: 18th Digital Systems Avionics Conference (1999)

    Google Scholar 

  5. Degani, A., Heymann, M.: Formal verification of human-automation interaction. In: Human Factors, vol. 44(1) (2002)

    Google Scholar 

  6. Corker, K.M.: Cognitive models and control. In: Sarter, N.B., Amalberti, R. (eds.) Cognitive Engineering in the Aviation Domain, Mahwah, NJ, LEA (2000)

    Google Scholar 

  7. Freed, M.A., Remington, R.W.: Making human-machine system simulation a practical engineering tool: An apex overview. In: Proceedings of the International Conference on Cognitive Modelling, Groningen, Holland (2000)

    Google Scholar 

  8. Frey, D., Schulz-Hardt, S.: Eine Theorie der gelernten Sorglosigkeit. In: Mandl, H. (ed.) H. Mandl (Hrsg.), Bericht über den 40. Kongress der Deutschen Gesellschaft für Psychologie, Göttingen: Hogrefe Verlag für Psychologie, pp. 604–611 (1997)

    Google Scholar 

  9. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychological Review 111 4, 1036–1060 (2004)

    Article  Google Scholar 

  10. Lewis, R.: Cognitive theory, soar. In: International Encylopedia of the Social and Behavioral Sciences, Pergamon (Elsevier Science), Amsterdam (2001)

    Google Scholar 

  11. Damm, W., Josko, B., Hungar, H., Pnueli, A.: A compositional real-time semantics of STATEMATE designs. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 186–238. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Card, S.K., Moran, T.P., Newell, A.: The Psychology of Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, NJ (1983)

    Google Scholar 

  13. Lüdtke, A., Cavallo, A., Christophe, L., Cifaldi, M., Fabbri, M., Javaux, D.: Human error analysis based on a cognitive architecture. In: Reuzeau, F., Corker, K., Boy, G. (eds.) Proceedings of HCI-Aero 2006, pp. 40–47. Cépaduès-Editions (2006)

    Google Scholar 

  14. Peikenkamp, T., Cavallo, A., Valacca, L., Böde, E., Pretzer, M., Hahn, E.M.: Towards a unified model-based safety assassment. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166, pp. 275–288. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Heise, E., Westermann, R.: Anderson’s theory of cognitive architecture (act*). In: Westmeyer, H. (ed.) Psychological theories from a structuralist point of view, pp. 103–127. Springer, Berlin (1989)

    Google Scholar 

  16. Milnes, B., Pelton, G., Doorenbos, R., Laird, M., Rosenbloom, P., Newell, A.: A specification of the soar cognitive architecture in z. Technical report, Carnegie Mellon University, Pittsburgh, PA, USA (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesca Saglietti Norbert Oster

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lüdtke, A., Pfeifer, L. (2007). Human Error Analysis Based on a Semantically Defined Cognitive Pilot Model. In: Saglietti, F., Oster, N. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2007. Lecture Notes in Computer Science, vol 4680. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75101-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75101-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75100-7

  • Online ISBN: 978-3-540-75101-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics