Structural Relaxations by Variable Renaming and Their Compilation for Solving MinCostSAT

  • Miquel Ramírez
  • Hector Geffner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4741)


Searching for optimal solutions to a problem using lower bounds obtained from a relaxation is a common idea in Heuristic Search and Planning. In SAT and CSPs, however, explicit relaxations are seldom used. In this work, we consider the use of explicit relaxations for solving MinCostSAT, the problem of finding a minimum cost satisfying assignment. We start with the observation that while a number of SAT and CSP tasks have a complexity that is exponential in the treewidth, such models can be relaxed into weaker models of bounded treewidth by a simple form of variable renaming. The relaxed models can then be compiled in polynomial time and space, so that their solutions can be used effectively for pruning the search in the original problem. We have implemented a MinCostSAT solver using this idea on top of two off-the-shelf tools, a d-DNNF compiler that deals with the relaxation, and a SAT solver that deals with the search. The results over the entire suite of 559 problems from the 2006 Weighted Max-SAT Competition are encouraging: SR( w ), the new solver, solves 56% of the problems when the bound on the relaxation treewidth is set to w = 8, while Toolbar, the winner, solves 73% of the problems, Lazy, the runner up, 55%, and MinCostChaff, a recent MinCostSAT solver, 26%. The relation between the proposed relaxation method and existing structural solution methods such as cutset decomposition and derivatives such as mini-buckets is also discussed.


Structural Relaxation Interaction Graph Weak Model Pattern Database Negative Literal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Culberson, J.C., Schaeffer, J.: Pattern Databases. Comp. Int. 14 (1998)Google Scholar
  2. 2.
    Korf, R.E.: Finding Optimal Solutions to Rubik’s Cube Using Pattern Patabases. In: Proc. AAAI 1998 (1998)Google Scholar
  3. 3.
    Bonet, B., Geffner, H.: Planning as Heuristic Search. Art. Int. 129 (2001)Google Scholar
  4. 4.
    Mackworth, A.K.: Consistency in Networks of Relations. Art. Int. 8 (1977)Google Scholar
  5. 5.
    Li, X.Y.: Optimization Algorithms for the Minimum–Cost Satisfiability Problem. PhD thesis, North Carolina State University (2004)Google Scholar
  6. 6.
    Dechter, R.: Constraint Processing. Morgan Kauffman, San Francisco (2003)Google Scholar
  7. 7.
    Darwiche, A.: New Advances in Compiling CNF to Decomposable Negational Normal Form. In: Proc. ECAI 2004 (2004)Google Scholar
  8. 8.
    Eén, N., Söressón, N.: MiniSAT: an Extensible SAT Solver. Technical report, Chalmers University (2005)Google Scholar
  9. 9.
    Darwiche, A.: Decomposable Negation Normal Form. Journal of the ACM 48(4), 608–647 (2001)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Marquis, P., Darwiche, A.: Compiling Propositional Weighted Bases. Artificial Intelligence 157(1–2), 81–113 (2004)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Argelich, J., et al.: First Evaluation of Max-SAT solvers (2006), Available at
  12. 12.
    Fu, Z., Malik, S.: Solving the Minimum Cost Satisfiability Problem using SAT Based Branch-and-Bound Search. In: Proc. of ICCAD 2006 (2006)Google Scholar
  13. 13.
    Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaille, G., Fargier, H.: Semiring-Based CSPs and Valued CSPs: Frameworks, Properties and Comparison. Constraints 4(3), 199–240 (2004)CrossRefGoogle Scholar
  14. 14.
    Papadimitrou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)Google Scholar
  15. 15.
    Giunchiglia, E., Maratea, M.: Solving Optimization Problems with DLL. In: Proc. of ECAI 2006 (2006)Google Scholar
  16. 16.
    Larrosa, J., Heras, F.: Resolution in Max-SAT and its Relation to Local Consistency in Weighted CSPs. In: Proc. of IJCAI 2005, pp. 193–199 (2005)Google Scholar
  17. 17.
    Larrosa, J., Heras, F.: New Inference Rules for Efficient Max-SAT Solving. In: Proc. AAAI 2006 (2006)Google Scholar
  18. 18.
    Li, C.M., Manyá, F., Planes, J.: Detecting Disjoint Inconsistent Subformulas for Computing Lower Bounds for Max-SAT. In: Proc. AAAI 2006 (2006)Google Scholar
  19. 19.
    de Givry, S., Larrosa, J., Messeguer, P., Schiex, T.: Solving Max-SAT as Weighted CSP. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Dechter, R.: Enhancement Schemes for Constraint Processing: Backjumping, Learning and Cutset Decomposition. Artificial Intelligence 43(3), 273–312 (1990)CrossRefGoogle Scholar
  21. 21.
    Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Bidyuk, B., Dechter, R.: On Finding Minimal w-cutset. In: Proc. UAI 2004 (2004)Google Scholar
  23. 23.
    Dechter, R.: Mini–Buckets: a General Scheme for Generating Approximations in Automated Reasoning. In: Proc. of IJCAI 1997, pp. 1297–1303 (1997)Google Scholar
  24. 24.
    Dechter, R.: Bucket Elimination: a Unifying Framework for Reasoning. Artificial Intelligence 113(1–2), 41–85 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Darwiche, A., Marquis, P.: A Knowledge Compilation Map. Journal of AI Research 17, 229–264 (2002)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Darwiche, A.: Recursive Conditioning. Artificial Intelligence 126(1–2), 5–41 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Coudert, O., Madre, J.C.: New Ideas for Solving Covering Problems. In: Proc. of DAC 1995, pp. 641–646 (1995)Google Scholar
  28. 28.
    Moskewicz, M.W., Madigan, C.F., et al.: Chaff: Engineeering an Efficient SAT Solver. In: Proc.of DAC 2001 (2001)Google Scholar
  29. 29.
    Zhang, L., Madigan, C.F., et al.: Efficient Conflict Driven Learning in a Boolean Satisfiability Solver. In: Proc. of ICCAD 2001 (2001)Google Scholar
  30. 30.
    Silva, J.P.M., Sakallah, K.A.: GRASP – A New Search Algorithm for Satisfiability. In: Proc. of ICCAD 1996, pp. 220–227 (1996)Google Scholar
  31. 31.
    Manquinho, V., Marques-Silva, J.: Search Pruning Techniques in SAT-based Branch-and-Bound Algorithms for the Binate Covering Problem. IEEE Trans. on CAD and Integrated Circuit and Systems 21, 505–516 (2002)CrossRefGoogle Scholar
  32. 32.
    Alsinet, T., Manyá, F., Planes, J.: Improved Exact Solvers for Weighted Max-SAT. In: Proc. of the 8th SAT conference (2005)Google Scholar
  33. 33.
    Choi, A., Chavira, M., Darwiche, A.: Node splitting: A scheme for generating upper bounds in bayesian networks. In: Proceedings UAI 2007 (to appear 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Miquel Ramírez
    • 1
  • Hector Geffner
    • 2
  1. 1.Universitat Pompeu Fabra, Passeig de Circumvalació 8, 08003 BarcelonaSpain
  2. 2.ICREA & Universitat Pompeu Fabra, Passeig de Circumvalació 8, 08003 BarcelonaSpain

Personalised recommendations