Skip to main content

Propagation = Lazy Clause Generation

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 4741)

Abstract

Finite domain propagation solvers effectively represent the possible values of variables by a set of choices which can be naturally modelled as Boolean variables. In this paper we describe how we can mimic a finite domain propagation engine, by mapping propagators into clauses in a SAT solver. This immediately results in strong nogoods for finite domain propagation. But a naive static translation is impractical except in limited cases. We show how we can convert propagators to lazy clause generators for a SAT solver. The resulting system can solve scheduling problems significantly faster than generating the clauses from scratch, or using Satisfiability Modulo Theories solvers with difference logic.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-74970-7_39
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-74970-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choi, C.W., Lee, J.H.M., Stuckey, P.J.: Propagation redundancy in redundant modelling. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 229–243. Springer, Heidelberg (2003)

    Google Scholar 

  2. Crawford, J., Baker, A.: Experimental results on the application of satisfiability algorithms to scheduling problems. In: Procs. AAAI 1994, pp. 1092–1097 (1994)

    Google Scholar 

  3. CSP2SAT: (December 2006), http://bach.istc.kobe-u.ac.jp/csp2sat/

  4. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  5. Barcelogic for SMT: (February 2007), http://www.lsi.upc.es/~oliveras/bclt-main.html

  6. GECODE: (February 2007), http://www.gecode.org

  7. Hawkins, P., Stuckey, P.J.: A Hybrid BDD and SAT Finite Domain Constraint Solver. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 103–117. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  8. Katsirelos, G., Bacchus, F.: Unrestricted nogood recording in CSP search. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 873–877. Springer, Heidelberg (2003)

    Google Scholar 

  9. Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In: The Twentieth National Conference on Artificial Intelligence (AAAI 2005), pp. 390–396 (2005)

    Google Scholar 

  10. Laborie, P.: Complete MCS-Based Search: Application to Resource Constrained Project Scheduling. In: Proceedings IJCAI 2005, pp. 181–186 (2005)

    Google Scholar 

  11. Marriott, K., Stuckey, P.J.: Programming with Constraints: an Introduction. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  12. MiniSat: (December 2006), http://www.cs.chalmers.se/Cs/Resarch/FormalMethods/MiniSat/

  13. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of DAC 2001 (2001)

    Google Scholar 

  14. Niewenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 36–50. Springer, Heidelberg (2005)

    Google Scholar 

  15. Roussel, O.: Some notes on the implementation of csp2sat+zchaff, a sim- ple translator from CSP to SAT. In: Proceedings of the 2nd International Workshop on Constraint Propagation and Implementation, pp. 83–88 (2005)

    Google Scholar 

  16. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP to SAT. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 590–603. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  17. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation and evaluation of the constraint language cc(FD). JLP 37(1–3), 139–164 (1998)

    MATH  CrossRef  Google Scholar 

  18. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohrimenko, O., Stuckey, P.J., Codish, M. (2007). Propagation = Lazy Clause Generation. In: Bessière, C. (eds) Principles and Practice of Constraint Programming – CP 2007. CP 2007. Lecture Notes in Computer Science, vol 4741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74970-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74970-7_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74969-1

  • Online ISBN: 978-3-540-74970-7

  • eBook Packages: Computer ScienceComputer Science (R0)