A Heuristic Algorithm for Reconstructing Ancestral Gene Orders with Duplications

  • Jian Ma
  • Aakrosh Ratan
  • Louxin Zhang
  • Webb Miller
  • David Haussler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4751)


Accurately reconstructing the large-scale gene order in an ancestral genome is a critical step to better understand genome evolution. In this paper, we propose a heuristic algorithm for reconstructing ancestral genomic orders with duplications. The method starts from the order of genes in modern genomes and predicts predecessor and successor relationships in the ancestor. Then a greedy algorithm is used to reconstruct the ancestral orders by connecting genes into contiguous regions based on predicted adjacencies. Computer simulation was used to validate the algorithm. We also applied the method to reconstruct the ancestral genomes of ciliate Paramecium tetraurelia.


gene order reconstruction duplication contiguous ancestral region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caprara, A.: Formulations and hardness of multiple sorting by reversals. RECOMB, 84–94 (1999)Google Scholar
  2. 2.
    Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Electronic Colloquium on Computational Complexity (ECCC), 5(71) (1998)Google Scholar
  3. 3.
    Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5(3), 555–570 (1998)CrossRefGoogle Scholar
  4. 4.
    Moret, B.M.E., Wyman, S.K., Bader, D.A., Warnow, T., Yan, M.: A new implmentation and detailed study of breakpoint analysis. PSB, 583–594 (2001)Google Scholar
  5. 5.
    Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)Google Scholar
  6. 6.
    Froenicke, L., Caldes, M.G., Graphodatsky, A., Muller, S., Lyons, L.A., Robinson, T.J., Volleth, M., Yang, F., Wienberg, J.: Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res. Genome Res. 16(3), 306–310 (2006)CrossRefGoogle Scholar
  7. 7.
    Bourque, G., Tesler, G., Pevzner, P.A.: The convergence of cytogenetics and rearrangement-based models for ancestral genome reconstruction. Genome Res. 16(3), 311–313 (2006)CrossRefGoogle Scholar
  8. 8.
    Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16(12), 1557–1565 (2006)CrossRefGoogle Scholar
  9. 9.
    Fitch, W.M.: Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416 (1971)CrossRefGoogle Scholar
  10. 10.
    Rocchi, M., Archidiacono, N., Stanyon, R.: Ancestral genomes reconstruction: An integrated, multi-disciplinary approach is needed. Genome Res. 16(12), 1441–1444 (2006)CrossRefGoogle Scholar
  11. 11.
    Eichler, E.E., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolution. Science 301(5634), 793–797 (2003)CrossRefGoogle Scholar
  12. 12.
    Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999)CrossRefGoogle Scholar
  13. 13.
    Sankoff, D., El-Mabrouk, N.: Duplication, rearrangement and reconciliation. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative genomics: Empirical and analytical approaches to gene order dynamics, map alignment and the evolution of gene families, pp. 537–550. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  14. 14.
    Marron, M., Swenson, K.M., Moret, B.M.E.: Genomic distances under deletions and insertions. Theor. Comput. Sci. 325(3), 347–360 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Page, R.D.M., Charleston, M.A.: From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Mol. Phylogenet. Evol. 7(2), 231–240 (1997)CrossRefGoogle Scholar
  16. 16.
    Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from Globin Sequences. Syst. Zool. 28(2), 132–163 (1979)CrossRefGoogle Scholar
  17. 17.
    Guigo, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogeny. Mol. Phylogenet. Evol. 6(2), 189–213 (1996)CrossRefGoogle Scholar
  18. 18.
    Boesch, F.T., Gimpel, J.F.: Covering points of a digraph with point-disjoint paths and its application to code optimization. J. ACM. 24(2), 192–198 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Aury, J.M., Jaillon, O., Duret, L., Noel, B., Jubin, C., Porcel, B.M., Ségurens, B., Daubin, V., Anthouard, V., Aiach, N., et al.: Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444, 171–178 (2006)CrossRefGoogle Scholar
  20. 20.
    Seoighe, C., Wolfe, K.H.: Extent of genomic rearrangement after genome duplication in yeast. PNAS 95(8), 4447–4452 (1998)CrossRefGoogle Scholar
  21. 21.
    El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM J. Comput. 32(3), 754–792 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Alekseyev, M.A., Pevzner, P.A.: Whole genome duplications and contracted breakpoint graphs. SIAM J. Comput. 36(6), 1748–1763 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Zheng, C., Zhu, Q., Sankoff, D.: Genome halving with an outgroup. Evolutionary Bioinformatics 2, 319–326 (2006)Google Scholar
  24. 24.
    Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7(3-4), 429–447 (2000)CrossRefGoogle Scholar
  25. 25.
    Bansal, M.S., Burleigh, J.G., Eulenstein, O., Wehe, A.: Heuristics for the gene-duplication problem: A Θ(n) speed-up for the local search. RECOMB, pp. 238–252 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jian Ma
    • 1
  • Aakrosh Ratan
    • 2
  • Louxin Zhang
    • 3
  • Webb Miller
    • 2
  • David Haussler
    • 1
  1. 1.Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064USA
  2. 2.Center for Comparative Genomics and Bioinformatics, Penn State University, University Park, PA 16802USA
  3. 3.Department of Mathematics, National University of Singapore, 117543Singapore

Personalised recommendations