Advertisement

Goal-Oriented Interaction Protocols

  • Lars Braubach
  • Alexander Pokahr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4687)

Abstract

Developing agent applications is a complex and difficult task due to a variety of reasons. One key aspect making multi-agent systems more complicated than traditional applications is that interaction behavior is based on elaborate communication forms such as negotiations instead of simple method calls. Aimed at facilitating the specification and usage of agent communication, agent research resulted e.g. in the definition and standardization of several general purpose interaction protocols such as contract-net or English auction. Nevertheless, the usage of these valuable interaction patterns currently forces developers to concentrate on the details of message passing instead of thinking in terms of the application domain. To alleviate this problem in this paper a goal-oriented approach is proposed, which hides message passing details allowing developers to concentrate on the domain aspects of protocols. The new approach is based on the BDI agent model and is implemented within the Jadex agent framework. The advantages of the goal-based interaction handling are further illustrated by an example application.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons, Chichester (2001)Google Scholar
  2. 2.
    Ferber, J.: Multi-Agents Systems. Addison-Wesley, Reading (1999)Google Scholar
  3. 3.
    Bauer, B., Müller, J., Odell, J.: Agent UML: A formalism for specifying multiagent software systems. Software Eng. and Knowledge Eng. 11(3), 207–230 (2001)CrossRefGoogle Scholar
  4. 4.
    Bordini, R., Dastani, M., Dix, J., El Fallah-Seghrouchni, A.: Multi-Agent Programming: Languages, Platforms and Applications. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  5. 5.
    Bratman, M.: Intention, Plans, and Practical Reason. Harvard Press (1987)Google Scholar
  6. 6.
    Dinkloh, M., Nimis, J.: A tool for integrated design and implementation of conversations in multiagent systems. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) Programming Multi-Agent Systems. LNCS (LNAI), vol. 3346, pp. 187–200. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Cabac, L., Moldt, D.: Formal semantics for AUML agent interaction protocol diagrams. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 47–61. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Rooney, C., Collier, R.W., O’Hare, G.M.P.: VIPER: A VIsual Protocol EditoR. In: De Nicola, R., Ferrari, G.L., Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 279–293. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Ehrler, L., Cranefield, S.: Executing agent UML diagrams. In: AAMAS 2004. Autonomous Agents and Multi-Agent Systems, pp. 906–913. IEEE, Los Alamitos (2005)Google Scholar
  10. 10.
    Scheibe, A.: Ausführungsumgebung für FIPA Interaktionsprotokolle am Beispiel von Jadex (in German). Diplomarbeit, University of Hamburg (2003)Google Scholar
  11. 11.
    Cheong, C., Winikoff, M.: Hermes: Designing goal-oriented agent interactions. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent systems with JADE. John Wiley & Sons, Chichester (2007)Google Scholar
  13. 13.
    Whitestein Technologies: Semantic Communication User Manual, 2.0.0 (2006)Google Scholar
  14. 14.
    Ricci, A., Viroli, M., Omicini, A.: CArtAgO: An infrastructure for engineering computational environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS. LNCS, vol. 4389, pp. 102–119. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    McCarthy, J.: Ascribing mental qualities to machines. In: Philosophical Perspectives in Artificial Intelligence, pp. 161–195. Humanities Press (1979)Google Scholar
  16. 16.
    Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal Representation for BDI Agent Systems. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) Programming Multi-Agent Systems. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: RE 2001. Requirements Engineering, pp. 249–263. IEEE Press, Los Alamitos (2001)Google Scholar
  18. 18.
    Giorgini, P., Kolp, M., Mylopoulos, J., Pistore, M.: The Tropos Methodology. In: Methodologies and Software Engineering for Agent Systems, Kluwer, Dordrecht (2004)Google Scholar
  19. 19.
    Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine [4]Google Scholar
  20. 20.
    Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the Capability Concept for Flexible BDI Agent Modularization. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) Programming Multi-Agent Systems. LNCS (LNAI), vol. 3862, pp. 139–155. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Foundation for Intelligent Physical Agents (FIPA): FIPA Contract Net Interaction Protocol Specification, Document no. FIPA00029 (December 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Lars Braubach
    • 1
  • Alexander Pokahr
    • 1
  1. 1.Distributed Systems and Information Systems, Computer Science Department, University of Hamburg 

Personalised recommendations