Advertisement

Large-Scale Agent-Based Pedestrian Simulation

  • Franziska Klügl
  • Guido Rindsfüser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4687)

Abstract

Pedestrian simulation is a challenging and fruitful application area for agent-based modeling and simulation in the traffic and transportation domain. In this paper we will present the concepts and results of a particular project study: an agent-based simulation of pedestrian traffic of the complete railway station of Bern during the most busy morning hours. Overall more than 40 000 agents are passing through during 1,5 virtual hours. Going beyond traditional approaches for microscopic pedestrian simulation, our simulated pedestrians are not only capable of moving without collisions between two pre-defined locations, but are able to flexibly plan and re-plan their way through the railway station. A short glance and some discussion about the potential of agent-based pedestrian simulation closes this contribution.

Keywords

Cellular Automaton Railway Station Static Obstacle Train Schedule Pedestrian Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Teknomo, K.: Microscopic Pedestrian Flow Characteristics: Development of an Image Processing Data Collection and Simulation Model. PhD thesis, Department of Human Social Information Sciences, Graduate School of Information Sciences, Tohoku University, Japan (2002)Google Scholar
  2. 2.
    Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Review E 51(5), 4282–4286 (1995)CrossRefGoogle Scholar
  3. 3.
    Schadschneider, A.: Cellular automaton approach to pedestrian dynamics - theory. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 75–85. Springer, New York (2002)Google Scholar
  4. 4.
    Adler, J.L., Blue, V.J.: Cellular automata model of emergent collective bidirectional pedestrian dynamics. In: McCaskill, J.S., Packard, N.H., Rasmussen, S. (eds.) Artifcial Life VII, pp. 437–445. MIT Press, Cambridge (2000)Google Scholar
  5. 5.
    Burstedde, A., Kirchner, A., Klauck, K., Schadschneider, A., Zittartz, J.: Cellular automaton approach to pedestrian dynamics - applications. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 87–97. Springer, New York (2002)Google Scholar
  6. 6.
    Gloor, C., Stucki, P., Nagel, K.: Hybrid techniques for pedestrian simulations. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 581–590. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Osaragi, T.: Modeling of pedestrian behavior and its applications to spatial evaluation. In: AAMAS 2004, pp. 836–843. IEEE Computer Society, Washington, DC (2004)Google Scholar
  8. 8.
    Willis, A., Kukla, R., Hine, J., Kerridge, J.M.: Developing the behavioural rules for an agent-based model of pedestrian movement. In: Proceedings of the European Transport Conference, pp. 69–80 (2000)Google Scholar
  9. 9.
    Toyama, M.C., Bazzan, A.L.C., da Silva, R.: An agent-based simulation of pedestrian dynamics: from lane formation to auditorium evacuation. In: AAMAS 2006, pp. 108–110. ACM Press, New York (2006)CrossRefGoogle Scholar
  10. 10.
    Dijkstra, J., Jessurun, J., de Vries, B., Timmermans, H.: Agent architecture for simulating pedestrians in the built environment. In: Bazzan, A.L.C., Chaib-Draa, B., Klügl, F., Ossowski, S. (eds.) 4th International Workshop on Agents in Traffic and Transportation at AAMAS 2006, Hakodate Japan, pp. 8–16 (2006)Google Scholar
  11. 11.
    Daamen, W.: Modelling Passenger Flows in Public Transport Facilities. PhD thesis, Technische Universiteit Delft (2004)Google Scholar
  12. 12.
    Scherger, K.: Evaluation verschiedener Ansätze zur Simulation von Fußgängerverhalten. Master’s thesis, Institut für Informatik, Universität Würzburg (2006)Google Scholar
  13. 13.
    Rüetschi, U.J., Timpf, S.: Modelling wayfinding in public transport: Network space and scene space. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 24–41. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Fehler, M., Klügl, F., Puppe, F.: Techniques for analysis and calibration of multiagent simulations. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW 2004. LNCS (LNAI), vol. 3451, pp. 305–321. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Franziska Klügl
    • 1
  • Guido Rindsfüser
    • 2
  1. 1.Dep. of Artificial Intelligence, University of Würzburg, Am Hubland, 97074  WürzburgGermany
  2. 2.Emch & Berger Bern AG, Gartenstr. 1, CH-3008 Bern 

Personalised recommendations