Skip to main content

Clustered Stochastic Optimization for Object Recognition and Pose Estimation

  • Conference paper
Pattern Recognition (DAGM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4713))

Included in the following conference series:


We present an approach for estimating the 3D position and in case of articulated objects also the joint configuration from segmented 2D images. The pose estimation without initial information is a challenging optimization problem in a high dimensional space and is essential for texture acquisition and initialization of model-based tracking algorithms. Our method is able to recognize the correct object in the case of multiple objects and estimates its pose with a high accuracy. The key component is a particle-based global optimization method that converges to the global minimum similar to simulated annealing. After detecting potential bounded subsets of the search space, the particles are divided into clusters and migrate to the most attractive cluster as the time increases. The performance of our approach is verified by means of real scenes and a quantative error analysis for image distortions. Our experiments include rigid bodies and full human bodies.

Our research is funded by the MPC for Visual Computing and Communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Bray, M., Kohli, P., Torr, P.: Posecut: Simultaneous segmentation and 3d pose estimation of humans using dynamic graph-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 642–655. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Brox, T., Rosenhahn, B., Cremers, D., Seidel, H.P.: High accuracy optical flow serves 3-d pose tracking: Exploiting contour and flow based constraints. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 98–111. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose tracking. Int. J. of Computer Vision 73(3), 243–262 (2007)

    Article  Google Scholar 

  4. Lowe, D.: Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence 31(3), 355–395 (1987)

    Article  Google Scholar 

  5. Lowe, D.: Fitting parameterized three-dimensional models to images. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(5), 441–450 (1991)

    Article  MathSciNet  Google Scholar 

  6. Ansar, A., Daniilidis, K.: Linear pose estimation from points or lines. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(5), 578–589 (2003)

    Article  Google Scholar 

  7. Gall, J., Rosenhahn, B., Seidel, H.P.: Robust pose estimation with 3d textured models. In: Chang, L.-W., Lie, W.-N. (eds.) PSIVT 2006. LNCS, vol. 4319, pp. 84–95. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Lepetit, V., Pilet, J., Fua, P.: Point matching as a classification problem for fast and robust object pose estimation. IEEE Conf. on Computer Vision and Pattern Recognition 2, 244–250 (2004)

    Google Scholar 

  9. Besl, P., McKay, N.: A method for registration of 3-d shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  10. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. of Computer Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

  11. Gall, J., Potthoff, J., Schnörr, C., Rosenhahn, B., Seidel, H.P.: Interacting and annealing particle systems – mathematics and recipes. J. of Mathematical Imaging and Vision (to appear, 2007)

    Google Scholar 

  12. Kirkpatrick, S., Jr., C.G., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  13. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    MATH  Google Scholar 

  14. Gall, J., Rosenhahn, B., Seidel, H.P.: An Introduction to Interacting Simulated Annealing. In: Human Motion - Understanding, Modeling, Capture and Animation, Springer, Heidelberg (to appear, 2007)

    Google Scholar 

  15. Douc, R., Cappe, O., Moulines, E.: Comparison of resampling schemes for particle filtering. In: Int. Symposium on Image and Signal Processing and Analysis, pp. 64–69 (2005)

    Google Scholar 

  16. Moral, P.D.: Feynman-Kac Formulae. In: Genealogical and Interacting Particle Systems with Applications, Springer, New York (2004)

    Google Scholar 

  17. Stolfi, J.: Oriented Projective Geometry: A Framework for Geometric Computation. Academic Press, Boston (1991)

    Google Scholar 

  18. Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton, FL (1994)

    MATH  Google Scholar 

  19. Pennec, X., Ayache, N.: Uniform distribution, distance and expectation problems for geometric features processing. J. of Mathematical Imaging and Vision 9(1), 49–67 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Technical Report TR2004-1963, Cornell Computing and Information Science (2004)

    Google Scholar 

  21. Gall, J., Rosenhahn, B., Brox, T., Seidel, H.P.: Learning for multi-view 3d tracking in the context of particle filters. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 59–69. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Brox, T., Rosenhahn, B., Kersting, U., Cremers, D.: Nonparametric density estimation for human pose tracking. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) Pattern Recognition. LNCS, vol. 4174, pp. 546–555. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. CMU: Graphics lab motion capture database,

Download references

Author information

Authors and Affiliations


Editor information

Fred A. Hamprecht Christoph Schnörr Bernd Jähne

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gall, J., Rosenhahn, B., Seidel, HP. (2007). Clustered Stochastic Optimization for Object Recognition and Pose Estimation. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds) Pattern Recognition. DAGM 2007. Lecture Notes in Computer Science, vol 4713. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74933-2

  • Online ISBN: 978-3-540-74936-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics