Learning to Recognize Faces Incrementally

  • O. Deniz
  • J. Lorenzo
  • M. Castrillon
  • J. Mendez
  • A. Falcon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4713)

Abstract

Most face recognition systems are based on some form of batch learning. Online face recognition is not only more practical, it is also much more biologically plausible. Typical batch learners aim at minimizing both training error and (a measure of) hypothesis complexity. We show that the same minimization can be done incrementally as long as some form of ”scaffolding” is applied throughout the learning process. Scaffolding means: make the system learn from samples that are neither too easy nor too difficult at each step. We note that such learning behavior is also biologically plausible. Experiments using large sequences of facial images support the theoretical claims. The proposed method compares well with other, numerical calculus-based online learners.

References

  1. 1.
    Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)CrossRefGoogle Scholar
  3. 3.
    Castrillon, M., Deniz, O., Guerra, C., Hernandez, M.: ENCARA2: Real-time detection of multiple faces at different resolutions in video streams. Journal of Visual Communication and Image Representation (in press, 2007)Google Scholar
  4. 4.
    Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector machine learning. In: NIPS, pp. 409–415 (2000)Google Scholar
  5. 5.
    Chellappa, R., Zhao, W. (eds.): Face Processing: Advanced Modeling and Methods. Elsevier, Amsterdam (2005)Google Scholar
  6. 6.
    Hall, P., Marshall, D., Martin, R.: Incremental Eigenanalysis for classification. In: Proceedings of the British Machine Vision Conference, vol. 1, pp. 286–295 (1998)Google Scholar
  7. 7.
    Hofmann, T., Scholkopf, B., Smola, A.J.: A tutorial review of RKHS methods in machine learning (2006), Available at http://sml.nicta.com.au/~smola/papers/unpubHofSchSmo05.pdf
  8. 8.
    Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Amer. Math. Soc. Notice 50(5), 537–544 (2003)MATHMathSciNetGoogle Scholar
  9. 9.
    Scholkopf, B., Smola, A.: Learning with kernels. MIT Press, Cambridge, MA (2002)Google Scholar
  10. 10.
    Vanschoenwinkel, B., Manderick, B.: Appropriate kernel functions for support vector machine learning with sequences of symbolic data. In: Deterministic and statistical methods in machine learning (First international workshop), Sheffield, UK, September 2004, pp. 256–280 (2004)Google Scholar
  11. 11.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)MATHGoogle Scholar
  12. 12.
    Vygotsky, L.: Mind and society: The development of higher mental processes. Harvard University Press (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • O. Deniz
    • 1
  • J. Lorenzo
    • 1
  • M. Castrillon
    • 1
  • J. Mendez
    • 1
  • A. Falcon
    • 1
  1. 1.Dpto. Informatica y Sistemas. Universidad de Las Palmas de Gran Canaria Campus de Tafira, Edificio Informatica. 35017 Las PalmasSpain

Personalised recommendations