Advertisement

Classifying Glaucoma with Image-Based Features from Fundus Photographs

  • Rüdiger Bock
  • Jörg Meier
  • Georg Michelson
  • László G. Nyúl
  • Joachim Hornegger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4713)

Abstract

Glaucoma is one of the most common causes of blindness and it is becoming even more important considering the ageing society. Because healing of died retinal nerve fibers is not possible early detection and prevention is essential. Robust, automated mass-screening will help to extend the symptom-free life of affected patients. We devised a novel, automated, appearance based glaucoma classification system that does not depend on segmentation based measurements. Our purely data-driven approach is applicable in large-scale screening examinations. It applies a standard pattern recognition pipeline with a 2-stage classification step. Several types of image-based features were analyzed and are combined to capture glaucomatous structures. Certain disease independent variations such as illumination inhomogeneities, size differences, and vessel structures are eliminated in the preprocessing phase. The “vessel-free” images and intermediate results of the methods are novel representations of the data for the physicians that may provide new insight into and help to better understand glaucoma. Our system achieves 86 % success rate on a data set containing a mixture of 200 real images of healthy and glaucomatous eyes. The performance of the system is comparable to human medical experts in detecting glaucomatous retina fundus images.

Keywords

Linear Discriminant Analysis Optic Nerve Head Feature Extraction Method Fundus Image Fundus Photograph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sivalingam, E.: Glaucoma: An overview. J. Ophthalmic. Nurs. Tech. 15(1), 15–18 (1996)Google Scholar
  2. 2.
    Malinovsky, V.E.: An overview of the Heidelberg Retina Tomograph. J. Am. Optom. Assoc. 67(8), 457–467 (1996)Google Scholar
  3. 3.
    Staal, J., Abràmoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)CrossRefGoogle Scholar
  4. 4.
    Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imag. 22(8), 951–958 (2003)CrossRefGoogle Scholar
  5. 5.
    Chrástek, R., Wolf, M., Donath, K., Niemann, H., Paulus, D., Hothorn, T., Lausen, B., Lämmer, R., Mardin, C., Michelson, G.: Automated segmentation of the optic nerve head for diagnosis of glaucoma. Med. Image Anal. 9(4), 297–314 (2005)CrossRefGoogle Scholar
  6. 6.
    Narasimha-Iyer, H., Can, A., Roysam, B., Stewart, C.V., Tanenbaum, H.L., Majerovics, A., Singh, H.: Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy. IEEE Trans. Biomed. Eng. 53(6), 1084–1098 (2006)CrossRefGoogle Scholar
  7. 7.
    Swindale, N.V., Stjepanovic, G., Chin, A., Mikelberg, F.S.: Automated analysis of normal and glaucomatous optic nerve head topography images. Invest. Ophthalmol. Vis. Sci. 41(7), 1730–1742 (2000)Google Scholar
  8. 8.
    Adler, W., Hothorn, T., Lausen, B.: Simulation based analysis of automated, classification of medical images. Methods Inf. Med. 43(2), 150–155 (2004)Google Scholar
  9. 9.
    Uchida, H., Brigatti, L., Caprioli, J.: Detection of structural damage from glaucoma with confocal laser image analysis. Invest. Ophthalmol. Vis. Sci. 37(12), 2393–2401 (1996)Google Scholar
  10. 10.
    Iester, M., Swindale, N.V., Mikelberg, F.S.: Sector-based analysis of optic nerve head shape parameters and visual field indices in healthy and glaucomatous eyes. J. Glaucoma. 6(6), 370–376 (1997)Google Scholar
  11. 11.
    Zangwill, L.M., Chan, K., Bowd, C., Hao, J., Lee, T.W., Weinreb, R.N., Sejnowski, T.J., Goldbaum, M.H.: Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest. Ophthalmol. Vis. Sci. 45(9), 3144–3151 (2004)CrossRefGoogle Scholar
  12. 12.
    Greaney, M.J., Hoffman, D.C., Garway-Heath, D.F., Nakla, M., Coleman, A.L., Caprioli, J.: Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. Invest. Ophthalmol. Vis. Sci. 43(1), 140–145 (2002)Google Scholar
  13. 13.
    Hornegger, J., Niemann, H., Risack, R.: Appearance-based object recognition using optimal feature transforms. Pattern Recogn 2(33), 209–224 (2000)CrossRefGoogle Scholar
  14. 14.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)CrossRefGoogle Scholar
  15. 15.
    Meier, J., Bock, R., Michelson, G., Nyúl, L.G., Hornegger, J.: Effects of preprocessing eye fundus images on appearance based glaucoma classification. In: Procceedings of International Conference on Computer Analysis of Images and Patterns (2007) (accepted for publication)Google Scholar
  16. 16.
    Lester, M., Garway-Heath, D., Lemij, H.: Optic Nerve Head and Retinal Nerve Fibre Analysis. European Glaucoma Society (2005)Google Scholar
  17. 17.
    Jain, A., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 14–19. IEEE Computer Society Press, Los Alamitos (1990)CrossRefGoogle Scholar
  18. 18.
    John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artifical Intelligence, San Mateo, pp. 338–345. Morgan Kaufmann Publishers, San Francisco (1995)Google Scholar
  19. 19.
    Chen, P.H., Lin, C.J., Schölkopf, B.: A tutorial on ν-support vector machines. Applied Stochastic Models in Business and Industry 21(2), 111–136 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hall, M.A.: Correlation-based Feature Selection for Machine Learning. PhD thesis, University of Waikato, Hamilton, New Zealand (1999)Google Scholar
  21. 21.
    Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning, pp. 148–156 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rüdiger Bock
    • 1
  • Jörg Meier
    • 1
  • Georg Michelson
    • 2
  • László G. Nyúl
    • 1
  • Joachim Hornegger
    • 1
  1. 1.Institute of Pattern Recognition, University of Erlangen-Nuremberg, Martensstraße 3, 91058 Erlangen 
  2. 2.Department of Ophthalmology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen 

Personalised recommendations