Advertisement

Image Statistics and Local Spatial Conditions for Nonstationary Blurred Image Reconstruction

  • Hongwei Zheng
  • Olaf Hellwich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4713)

Abstract

Deblurring is important in many visual systems. This paper presents a novel approach for nonstationary blurred image reconstruction with ringing reduction in a variational Bayesian learning and regularization framework. Our approach makes effective use of the image statistical prior and image local spatial conditions through the whole learning scheme. A nature image statistics based marginal prior distribution is used not only for blur kernel estimation but also for image reconstruction. For an ill-posed blur estimation problem, variational Bayesian ensemble learning can achieve a tractable posterior using an image statistic prior which is translation and scale-invariant. During the deblurring, nonstationary blurry images have stronger ringing effects. We thus propose an iterative reweighted regularization function based on the use of an image statistical prior and image local spatial conditions for perceptual image deblurring.

Keywords

Natural Image Independent Component Analysis Image Restoration Kernel Estimation Blur Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zheng, H., Hellwich, O.: Introducing dynamic prior knowledge to partially-blurred image restoration. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) Pattern Recognition. LNCS, vol. 4174, pp. 111–121. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Zheng, H., Hellwich, O.: Double regularized Bayesian estimation for blur identification in video sequences. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 943–952. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Molina, R., Katsaggelos, A., Mateos, J.: Bayesian and regularization methods for hyperparameters estimate in image restoration. IEEE Tr. on Sig. 8, 231–246 (1999)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Miskin, J., MacKay, D.J.C.: Ensemble Learning for Blind Image Separation and Deconvolution. In: Adv. in Independent Component Analysis, Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Miskin, J.W.: Ensemble Learning for Independent Component Analysis. PhD thesis, Uni. Cambridge (2000)Google Scholar
  6. 6.
    Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur estimation. IEEE Trans. on PAMI 20, 699–716 (1998)Google Scholar
  7. 7.
    Hinton, G.E., Camp, D.v.: Keeping neural networks simple by minimizing the description length of the weights.s. In: ACM Conf. on Computational Learning Theory, pp. 5–13 (1993)Google Scholar
  8. 8.
    Attias, H.: A variational Bayesian framework for graphical models. In: Leen, T, et al. (eds.) Advances in NIPS, pp. 209–215 (2000)Google Scholar
  9. 9.
    Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.: Removing camera shake from a single photograph. In: SIGGRAPH 2006, vol. 25, pp. 787–794 (2006)Google Scholar
  10. 10.
    Simoncelli, E.: Statistical models for images: Compression, restoration and synthesis. In: 31st Asilomar Conf. on Sig., Sys. and Computers (1997)Google Scholar
  11. 11.
    Lagendijk, R., Biemond, J., Boekee, D.: Regularized iterative image restoration with ringing reduction. IEEE Tr. on Ac., Sp., and Sig. Proc. 36, 1874–1888 (1988)zbMATHCrossRefGoogle Scholar
  12. 12.
    Heiler, M., Schnörr, C.: Natural image statistics for natural image segmentation. IJCV 63, 5–19 (2005)CrossRefGoogle Scholar
  13. 13.
    Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. IJCV 40, 49–72 (2000)zbMATHCrossRefGoogle Scholar
  14. 14.
    Field, D.J.: Relations between the statistics and natural images and the responses properties of cortical cells. J. Optical Soc. Am. A. 4, 2379–2394 (1987)CrossRefGoogle Scholar
  15. 15.
    Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)CrossRefGoogle Scholar
  16. 16.
    Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE on PAMI 11, 674–693 (1989)zbMATHGoogle Scholar
  17. 17.
    Roth, S., Black, M.: Fields of experts: A framework for learning image priors. In: CVPR, San Diego, pp. 860–867 (2005)Google Scholar
  18. 18.
    Zhu, S., Wu, X., Mumford, D.: Minimax entropy principle and its to texture modeling. Neural Computation 9, 1627–1660 (1997)CrossRefGoogle Scholar
  19. 19.
    Opper, M., Saad, D.: Advanced Mean Field Methods: Theory and Practice. MIT Press, Cambridge, Massachusetts (2001)zbMATHGoogle Scholar
  20. 20.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. PAMI 12, 629–639 (1990)Google Scholar
  21. 21.
    O’leary, D.P.: Robust regression computation using iteratively reweighted least squares. SIAM J. Matrix Anal. Appl. 11, 466–480 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. IJCV 70, 257–277 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hongwei Zheng
    • 1
  • Olaf Hellwich
    • 1
  1. 1.Computer Vision & Remote Sensing, Berlin University of Technology, Franklinstrasse 28/29, Office FR 3-1, D-10587 Berlin 

Personalised recommendations