Optimal Dominant Motion Estimation Using Adaptive Search of Transformation Space

  • Adrian Ulges
  • Christoph H. Lampert
  • Daniel Keysers
  • Thomas M. Breuel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4713)


The extraction of a parametric global motion from a motion field is a task with several applications in video processing. We present two probabilistic formulations of the problem and carry out optimization using the RAST algorithm, a geometric matching method novel to motion estimation in video. RAST uses an exhaustive and adaptive search of transformation space and thus gives – in contrast to local sampling optimization techniques used in the past – a globally optimal solution. Among other applications, our framework can thus be used as a source of ground truth for benchmarking motion estimation algorithms.

Our main contributions are: first, the novel combination of a state-of-the-art MAP criterion for dominant motion estimation with a search procedure that guarantees global optimality. Second, experimental results that illustrate the superior performance of our approach on synthetic flow fields as well as real-world video streams. Third, a significant speedup of the search achieved by extending the model with an additional smoothness prior.


Motion Vector Motion Estimation Spatial Coherence Global Motion Foreground Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Black, M.J., Anandan, P.: The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields. CVIU, 63(1), 75–104 (1996)Google Scholar
  2. 2.
    Breuel, T.M.: On the Use of Interval Arithmetic in Geometric Branch-and-Bound Algorithms. Pattern Recogn. Lett. 24(9-10), 1375–1384 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Breuel, T.M.: Fast Recognition using Adaptive Subdivisions of Transformation Space. In: CVPR 1992, pp. 445–451 (1992)Google Scholar
  4. 4.
    Cremers, D., Soatto, S.: Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation. Int. J. Comput. Vision 62(3), 249–265 (2005)CrossRefGoogle Scholar
  5. 5.
    Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Geman, D.: Stochastic Model for Boundary Detection. Image Vision Comput. 5(2), 61–65 (1987)CrossRefGoogle Scholar
  7. 7.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2003)Google Scholar
  8. 8.
    Irani, M., Anandan, P.: About Direct Methods. In: ICCV 1999: Intern. Workshop on Vision Algorithms, London, UK, pp. 267–277 (2000)Google Scholar
  9. 9.
    Jepson, A., Black, M.J.: Mixture Models for Optical Flow Computation. In: CVPR 1993, pp. 760–761 (1993)Google Scholar
  10. 10.
    Kühne, G.: Motion-based Segmentation and Classification of Video Objects. PhD thesis, University of Mannheim (2002)Google Scholar
  11. 11.
    Lepetit, V., Fua, P.: Monocular Model-Based 3D Tracking of Rigid Objects: A Survey. Foundations and Trends in Computer Graphics and Vision 1(1) (2005)Google Scholar
  12. 12.
    Murray, D.W., Buxton, B.F.: Scene Segmentation from Visual Motion using Global Optimization. IEEE Trans. Pattern Anal. Mach. Intell. 9(2), 220–228 (1987)CrossRefGoogle Scholar
  13. 13.
    Smolic, A.: Globale Bewegungsbeschreibung und Video Mosaiking unter Verwendung parametrischer 2-D Modelle. PhD thesis, RWTH Aachen (2001)Google Scholar
  14. 14.
    Tomasi, C., Kanade, T.: Detection and Tracking of Point Features. Technical Report CMU-CS-91-132, CMU (1991)Google Scholar
  15. 15.
    Tourapis, A.M.: Enhanced Predictive Zonal Search for Single and Multiple Frame Motion Estimation. In: Proc. SPIE Conf. Visual Communications and Image Processing, Lugano, Switzerland, pp. 1069–1079 (2002)Google Scholar
  16. 16.
    Wang, J.Y.A., Adelson, E.H.: Layered Representation for Motion Analysis. In: CVPR 1993, pp. 361–366 (1993)Google Scholar
  17. 17.
    Weiss, Y.: Smoothness in Layers: Motion Segmentation using Nonparametric Mixture Estimation. In: CVPR 1997, pp. 520–526 (1997)Google Scholar
  18. 18.
    Ulges, A.: Motion Interpretation using Adaptive Search of Transformation Space. Technical Report, IUPR Research Group, TU Kaiserslautern (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Adrian Ulges
    • 1
  • Christoph H. Lampert
    • 2
  • Daniel Keysers
    • 3
  • Thomas M. Breuel
    • 1
  1. 1.Department of Computer Science, Technical University of Kaiserslautern 
  2. 2.Department for Empirical Inference, Max-Planck-Institute for Biological Cybernetics, Tübingen 
  3. 3.Image Understanding and Pattern Recognition Group, German Research Center for Artificial Intelligence (DFKI), Kaiserslautern 

Personalised recommendations