Advertisement

Simultaneous Estimation of Surface Motion, Depth and Slopes Under Changing Illumination

  • Tobias Schuchert
  • Hanno Scharr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4713)

Abstract

In this paper we extend a multi-camera model for simultaneous estimation of 3d position, normals, and 3d motion of surface patches [17] to be able to handle brightness changes coming from changing illumination. In the target application only surface orientation and 3d motion are of interest. Thus color related surface properties like bidirectional reflectance distribution function do not need to be reconstructed. Consequently we characterize only changes of the brightness using a second-order power series. We test two new models within a total least squares estimation framework using synthetic data with ground truth available. Motion estimation results improve severely with respect to the brightness constancy model when brightness changes are present in the data.

Keywords

Motion Vector Motion Estimate Simultaneous Estimation Surface Patch Incident Irradiance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. IJCV 12(1), 43–77 (1994)CrossRefGoogle Scholar
  2. 2.
    Bruhn, A., Weickert, J., Schnörr, C.: Lucas/kanade meets horn/schunck: Combining local and global optic flow methods. IJCV 61(3), 211–231 (2005)CrossRefGoogle Scholar
  3. 3.
    Carceroni, R., Kutulakos, K.: Multi-view 3d shape and motion recovery on the spatio-temporal curve manifold. In: ICCV (1), pp. 520–527 (1999)Google Scholar
  4. 4.
    Denney Jr., T.S., Prince, J.L.: Optimal brightness functions for optical flow estimation of deformable motion. IEEE Trans. Im. Proc. 3(2), 178–191 (1994)CrossRefGoogle Scholar
  5. 5.
    Farnebäck, G.: Fast and accurate motion est. using orient. tensors and param. motion models. In: ICPR, pp. 135–139 (2000)Google Scholar
  6. 6.
    Fleet, D.J., Black, M.J., Yacoob, Y., Jepson, A.D.: Design and use of linear models for image motion analysis. IJCV 36(3), 171–193 (2000)CrossRefGoogle Scholar
  7. 7.
    Haußecker, H., Fleet, D.J.: Computing optical flow with physical models of brightness variation. PAMI 23(6), 661–673 (2001)Google Scholar
  8. 8.
    Haussecker, H.: Interaction of radiation with matter. In: Handbook of Computer Vision and Applications, vol. 1, pp. 37–62. Academic Press, London (1999)Google Scholar
  9. 9.
    Haußecker, H., Spies, H.: Motion. In: Jähne, B., Haußecker, H., Geißler, P. (eds.) Handbook of Computer Vision and Applications, Academic Press, London (1999)Google Scholar
  10. 10.
    Horn, B.K., Schunck, B.G.: Determining optical flow. Art. Int. 17, 185–204 (1981)CrossRefGoogle Scholar
  11. 11.
    Li, G., Zucker, S.W.: Differential geometric consistency extends stereo to curved surfaces. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 44–57. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: DARPA Im. Underst. Workshop, pp. 121–130 (1981)Google Scholar
  13. 13.
    Nakamura, Y., Matsuura, T., Satoh, K., Ohta, Y.: Occlusion detectable stereo–occlusion patterns in camera matrix. In: CVPR, pp. 371–378 (1996)Google Scholar
  14. 14.
    Nestares, O., Fleet, D.J., Heeger, D.J.: Likelihood functions and confidence bounds for total-least-squares problems. In: CVPR, pp. 523–530 (2000)Google Scholar
  15. 15.
    Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. IJCV 67(2), 141–158 (2006)CrossRefGoogle Scholar
  16. 16.
    Pov-ray 3.6, http://www.povray.org
  17. 17.
    Scharr, H., Schuchert, T.: Simultaneous motion, depth and slope estimationwith a camera-grid. In: Vision, Modeling and Visualization 2006, pp. 81–88 (2006)Google Scholar
  18. 18.
    Slesareva, N., Bruhn, A., Weickert, J.: Optic flow goes stereo: A variational method for estimating discontinuity-preserving dense disparity maps. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) Pattern Recognition. LNCS, vol. 3663, pp. 33–40. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Szeliski, R.: A multi-view approach to motion and stereo. In: CVPR (1999)Google Scholar
  20. 20.
    Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Threedimensional scene flow. In: ICCV 1999, pp. 722–729 (1999)Google Scholar
  21. 21.
    Vedula, S., Baker, S., Seitz, S., Collins, R., Kanade, T.: Shape and motion carving in 6d. In: CVPR 2000, pp. 592–598 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Tobias Schuchert
    • 1
  • Hanno Scharr
    • 1
  1. 1.ICG III, Research Center Jülich, 52425 JülichGermany

Personalised recommendations