The Evolution of Pain

  • Alberto Acerbi
  • Domenico Parisi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4648)


We describe two simple simulations in which artificial organisms evolve an ability to respond to inputs from within their own body and these inputs themselves can evolve. In the first simulation the organisms develop an ability to respond to a pain signal caused by body damage by stopping looking for food when they feel pain since resting while the body is damaged accelerates healing of the body and increases the individual’s survival chances. In the second simulation the pain signal itself evolves, that is, the body develops a tendency to send pain signals to the nervous system when the body is damaged. The results are discussed in terms of an internal robotics in which the robot’s body has an internal structure and not only an external morphology and the neural network that controls the robot’s behavior responds to inputs both from the external environment and from within the body.


artificial life neural nets internal robotics pain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archer, J.: The Nature of Grief. The Evolution and Psychology of Reaction to Loss. Routledge, London (1999)Google Scholar
  2. 2.
    Besson, J.M.: The neurobiology of pain. The Lancet 353, 1610–1615 (1999)CrossRefGoogle Scholar
  3. 3.
    Bowlby, J.: Attachament and Loss, vol. 2. Separation: Anxiety and Anger. Hogart, London (1975)Google Scholar
  4. 4.
    Cangelosi, A., Parisi, D., Nolfi, S.: Cell division and migration in a ‘genotype’ for neural networks. Network 5, 497–515 (1994)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cecconi, F., Parisi, D.: Neural networks with motivational units. In: Meyer, A.J., Roitblat, H.L., Wilson, S.W. (eds.) From animals to animats 2: Proceddings of the 2nd International Conference on Simulation of Adaptive Behavior, pp. 346–355. MIT Press, Cambridge (1993)Google Scholar
  6. 6.
    Fellous, J.M., Arbib, M. (eds.): Who needs Emotions? The Brain Meets the Robot. Oxford University Press, Oxford (2005)Google Scholar
  7. 7.
    Hendry, S.: Pain. In: Wilson, R., Keil, F. (eds.) MIT Encyclopedia of Cognitive Sciences, pp. 622–624. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Loeser, J.D., Melzack, R.: Pain: an overview. The Lancet 353, 1607–1609 (1999)CrossRefGoogle Scholar
  9. 9.
    Melzack, R.: The Puzzle of Pain. Basic Books, New York (1973)Google Scholar
  10. 10.
    Mirolli, M., Parisi, D.: Artificial organisms that sleep. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 377–386. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Nesse, R.M.: What good is feeling bad? The evolutionary benefits of psychic pain. The Sciences nov./dic, 30–37 (1991)Google Scholar
  12. 12.
    Nesse, R.M.: The Evolution of Hope and Despair. Social Research 66, 429–469 (1999)Google Scholar
  13. 13.
    Nesse, R.M.: Is depression an adaptation? Archives of General Psychiatry 57, 14–20 (2000)Google Scholar
  14. 14.
    Parisi, D.: Motivation in artificial organisms. In: Tascini, G., Esposito, V., Roberto, V., Zingaretti, P. (eds.) Machine Learning and Perception, pp. 3–19. World Scientific, Singapore (1996)Google Scholar
  15. 15.
    Parisi, D.: Internal robotics. Connection Science 16, 325–338 (2004)CrossRefGoogle Scholar
  16. 16.
    Wall, P.: Pain. Weidenfeld and Nicolson, London (1999)Google Scholar
  17. 17.
    Willis, W.D.: The Pain System: The Neural Basis of Nociceptive Transmission in the Mammalian Nervous System. Kragel, Basel (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alberto Acerbi
    • 1
  • Domenico Parisi
    • 1
  1. 1.Institute of Cognitive Sciences and Technologies, National Research Council, 44, Via San Martino della Battaglia, 00185, RomeItaly

Personalised recommendations