Skip to main content

The Wave Energy Resource

  • Chapter
Ocean Wave Energy

Part of the book series: Green Energy and Technology(Virtual Series) ((GREEN))

Abstract

On an average day, about 1TWh of wave energy enters the coastal waters of the British Isles. It is tempting to call this amount huge - it is about the same as the to-tal energy of the terrible Indian Ocean tsunami of the 26th of December 2004. It brings home the scale of human energy demands to realise that this is also about the same amount of energy as is used in electricity in the British Isles on an aver-age day. The same approximate equivalence holds at a world scale: the total wave energy resource is of the same order of magnitude as world electricity consumption (~ 2TW). The exploitable limit is probably at most about 10-25% of the resource; thus ocean wave energy is potentially a significant contributor to human energy demands, not a panacea. Its key advantages are that it comes in a high quality form - mechanical energy of oscillation - and that it travels very long distances with little loss, so that small inputs over a large ocean can accumulate and be harvested at or near the ocean’s edge. Other advantages include the point absorber effect, whereby devices can extract energy from a fraction of a wavelength on either side; this makes small devices, with capacities of the order of 1MW, relatively attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov, Csaki (eds) Proc 2nd Int Symp Inform Theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Allender J, Audunson T, Barstow S, Bjerken S, Krogstad HE, Steinbakke P, Vartdal L, Borgman L, Graham C (1989) The WADIC Project: A comprehensive field evaluation of directional wave instrumentation. Ocean Eng 161:505–536

    Article  Google Scholar 

  • Barber NF (1961) The directional resolving power of an array of wave detectors. Ocean Wave Spectra. Prentice-Hall, pp 137–150

    Google Scholar 

  • Barstow SF, Aasen SE, Mathisen JP (2005) WaveSense marks the first 20-years service for the Wavescan buoy. Sea Technol, pp 53–57

    Google Scholar 

  • Barstow SF, Kollstad T (1991) Field trials of the Directional Waverider. In: Proc 1st Int Off Pol Eng Conf (ISOPE), pp 55–63

    Google Scholar 

  • Barstow SF, Mûrk G, Lûnseth L, Schjûlberg P, Machado U, Athanassoulis G, Belibassakis K, Gerostathis T, Stefanakos CN, Spaan G (2003) WorldWaves: Fusion of data from many sources in a user-friendly software package for timely calculation of wave statistics in global coastal waters. Proc 13th ISOPE Conf. Oahu, Hawaii, USA

    Google Scholar 

  • Benoit M (1992) Practical comparative performance survey of methods used for estimating directional wave spectra from heave-pitch-roll data. In: Proc 23rd Int Conf Coastal Eng (ASCE). Venice, Italy, pp 62–75

    Google Scholar 

  • Benoit M, Frigaard P, Schäffer HA (1997) Analysing Multidirectional Wave Spectra: A Tentative Classification of Available Methods. In: Proc IAHR Sem Multidirectional Waves Interact Struct. 27th IAHR Congress. San Francisco, USA, pp 131–158

    Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions. 1. Model description and validation. J Geophys Res 104(C4):7649–7666

    Article  Google Scholar 

  • Capon J, Greenfield RJ, Kolker RJ (1967) Multidimensional maximum-likelihood processing of a large aperture seismic array. Proc IEEE 55:92–211

    Google Scholar 

  • Cruz J, Mackay E, Martins T (2007) Advances in Wave Resource Estimation: Measurements and Data Processing. Proc 7th Eur Wave Tidal Energy Conf. Porto, Portugal

    Google Scholar 

  • Donelan M, Krogstad H (2005) The Wavelet Directional Method. In: Khama et al. (eds) Measuring and analysing the directional spectra of ocean waves. EU Cost Action 714.71–80

    Google Scholar 

  • Goda Y (2000) Random seas and design of maritime structures, 2nd edn. World Scientific Publishing

    Google Scholar 

  • Hagerman G (1985) Oceanographic design criteria and site selection for ocean wave energy conversion. In: Proc IUTAM Sym Lisbon 1985. Hydrodynamics of Ocean Wave Energy Utilization. Springer Verlag

    Google Scholar 

  • Hashimoto N, Kobune K, Kameyama Y (1987) Estimation of directional spectrum using the Bayesian approach and its application to field data analysis. Rep Port Harbour Res Inst, Vol. 26

    Google Scholar 

  • Hashimoto N, Nagai T, Asai T (1994) Extension of Maximum Entropy Principle for directional wave spectrum estimation. In: Proc 24th Int Conf Coastal Eng (ASCE). Kobe, Japan, pp 232–246

    Google Scholar 

  • Hasselmann K (1962) On the nonlinear energy transfer in a gravity-wave spectrum. 1. General theory. J Fluid Mech 12:481–500

    Article  MATH  MathSciNet  Google Scholar 

  • Hasselmann K (1963) On the nonlinear energy transfer in a gravity-wave spectrum. 2. Conservation laws, wave-particle correspondence, irreversibility. J Fluid Mech 15:273–281

    Article  MATH  MathSciNet  Google Scholar 

  • Hawkes PJ, Ewing JA, Harford CM, Klopman G, Stansberg CT, Benoit M, Briggs MJ, Frigaard P, Hiraishi T, Miles M, Santas J, Schäffer HA (1997) Comparative Analyses of Multidirectional Wave Basin Data. In: Proc IAHR Sem Multidirectional Waves Interact Struct, 27th IAHR Congress. San Francisco, USA, pp 25–88

    Google Scholar 

  • Isobe M, Kondo K, Horikawa K (1984) Extension of MLM for estimating directional wave spectrum. In: Proc Symp Descript Model Directional Seas, Paper A-6. Lingby, Denmark

    Google Scholar 

  • Isobe M (1990) Estimation of directional spectrum expressed in a standard form. In: Proc 22nd Int Conf Coastal Eng (ASCE), pp 467–483

    Google Scholar 

  • Johnson D (2002) DIWASP, a directional wave spectra toolbox for MATLAB: User Manual. Research Report WP-1601-DJ (V1.1). Centre for Water Research, University of Western Australia

    Google Scholar 

  • Kahma K, Hauser D, Krogstad HE, Lehner S, Monbaliu JAJ, Wyatt L (2005) Measuring and Analysing the Directional Spectra of Ocean Waves. EU COST Action 714. EUR 21367. ISBN 92-898-0003-8

    Google Scholar 

  • Kinsman B (1965) Wind Waves. Prentice-Hall, pp 460–471

    Google Scholar 

  • Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1994) Dynamics and Modelling of Ocean Waves. Cambridge Univ Press

    Google Scholar 

  • Krogstad HE, Barstow SF (1999) Satellite Wave Measurements for Coastal Engineering Applications. Coastal Eng 37:283–307

    Article  Google Scholar 

  • Kuik AJ, van Vledder G, Holthuijsen LH (1988) A Method for the Routine Analysis of Pitch-and-Roll Buoy Wave Data. J Phys Oceanogr 18:1020–1034

    Article  Google Scholar 

  • Longuet-Higgins MS, Cartwright DE, Smith ND (1963) A variational technique for extracting directional spectra from multicomponent wave data. J Phys Oceanogr 10:944–952

    Google Scholar 

  • Longuet-Higgins MS (1985) Accelerations in steep gravity waves. J Phys Oceanogr 15:1570–1579

    Article  Google Scholar 

  • Lygre A, Krogstad H (1986) Maximum Entropy Estimation of the Directional Distribution in Ocean Wave Spectra. J Phys Oceanogr 16:2052–2060

    Article  Google Scholar 

  • Mitsuyasu H, Tasai, F, Suhara T, Mizuno S, Ohkuso M, Honda T, Rikishi K (1975) Observations of the directional spectrum of ocean waves using a cloverleaf buoy. J Phys Oceanogr 5:750–760

    Article  Google Scholar 

  • Mollison D (1983) Wave energy losses in intermediate depths. Appl Ocean Res 5:234–237

    Article  Google Scholar 

  • Mollison D (1986) Wave climate and the wave power resource. In: Evans DV, Falcao Af de O (eds) Hydrodynamics of Ocean Wave–Energy Utilization. Springer–Verlag, Heidelberg, pp 133–156

    Google Scholar 

  • Mollison D (1994) Assessing the wave energy resource. In: Barnett V, Turkmann KF (eds) Statistics for the Environment 2: Water Related Issues. Wiley, pp 205–221

    Google Scholar 

  • Pawka SS (1983) Island shadows in wave directional spectra. J Geophys Res 88(C4):2579–2591

    Google Scholar 

  • Pierson WJ, Moskowitz L (1964) A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii. J Geophys Res 69:5181–5190

    Article  Google Scholar 

  • Pontes MT et al. (1996) An atlas of the wave-energy resource in Europe. J Offshore Mech Arctic Eng 118:307–309

    Google Scholar 

  • Queffeulou P (2004) Long term validation of wave height measurements from altimeters. Marine Geod 27:495–510

    Article  Google Scholar 

  • Sand SE (1984) Deterministic Decomposition of Pitch-and-Roll Buoy Measurements. Costal Eng 8:242–263

    Google Scholar 

  • Schäffer HA, Hyllested P (1994) Analysis of Multidirectional Waves Using Deterministic Decomposition. In: Proc Int Symp: Waves – Physical and Numerical Modelling. Univ British Columbia, Vancouver, Canada, pp 911–920

    Google Scholar 

  • Southgate HN (1987) Wave prediction in deep water and at the coastline. Report SR 114. HR Wallingford, UK

    Google Scholar 

  • Tucker MJ, Pitt EG (2001) Waves in Ocean Eng. Elsevier Science Ltd, London

    Google Scholar 

  • WAMDI Group (1988) The WAM Model – a third-generation ocean wave prediction model. J Phys Oceanogr 18:1775–1810

    Article  Google Scholar 

  • Whittaker TJT et al. (1992) The UK’s Shoreline and Nearshore Wave Energy Resource. UK Dept of Trade & Industry, ETSU WV 1683

    Google Scholar 

  • Woolf DK, Cotton PD, Challenor PG (2003) Measurement of the offshore wave cli mate around the British Isles by Satellite Altimeter. Philos Trans R Soc Lond Ser A, pp 27–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barstow, S., Mørk, G., Mollison, D., Cruz, J. (2008). The Wave Energy Resource. In: Cruz, J. (eds) Ocean Wave Energy. Green Energy and Technology(Virtual Series). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74895-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74895-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74894-6

  • Online ISBN: 978-3-540-74895-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics