Predictive and Contextual Feature Separation for Bayesian Metanetworks

  • Vagan Terziyan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4694)


Bayesian Networks are proven to be a comprehensive model to describe causal relationships among domain attributes with probabilistic measure of conditional dependency. However, depending on a context, many attributes of the model might not be relevant. If a Bayesian Network has been learned across multiple contexts then all uncovered conditional dependencies are averaged over all contexts and cannot guarantee high predictive accuracy when applied to a concrete case. We are considering a context as a set of contextual attributes, which are not directly effect probability distribution of the target attributes, but they effect on “relevance” of the predictive attributes towards target attributes. In this paper we use the Bayesian Metanetwork vision to model context-sensitive feature relevance. Separating contextual and predictive features is an important task. In this paper we also consider three strategies of extracting context from relevant features, which are based on: part_of context, role-based context and interface-based context.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)Google Scholar
  2. 2.
    Henrion, M.: Some Practical Issues in Constructing Belief Networks. In: Proceedings of the 3-rd Annual Conf. on Uncertainty in Artificial Intelligence, pp. 161–174. Elsevier, Amsterdam (1989)Google Scholar
  3. 3.
    Heckerman, D.: A Tutorial on Learning with Bayesian Networks, Technical Report MSR-TR-95-06 Microsoft Research (March 1995)Google Scholar
  4. 4.
    Butz, C.J.: Exploiting Contextual Independencies in Web Search and User Profiling. In: Proceedings of the World Congress on Computational Intelligence, Hawaii, USA, pp. 1051–1056 (2002)Google Scholar
  5. 5.
    Boutiler, C., Friedman, N., Goldszmidt, M., Koller, D.: ontext-Specific Independence in Bayesian Networks. In: Proceedings of the 12-th Conference on Uncertainty in Artificial Intelligence, Portland, USA, pp. 115–123 (1996)Google Scholar
  6. 6.
    Zhang, N.L.: Inference in Bayesian networks: The Role of Context-Specific Independence. International Journal of Information Technology and Decision Making 1(1), 91–119 (2002)CrossRefGoogle Scholar
  7. 7.
    Geiger, D., Heckerman, D.: Knowledge Representation and Inference in Similarity Networks and Bayesian Multinets. Artificial Intelligence 82, 45–74 (1996)CrossRefGoogle Scholar
  8. 8.
    Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine Learning 29(2-3), 131–161 (1997)zbMATHCrossRefGoogle Scholar
  9. 9.
    Cheng, J., Greiner, R.: Learning Bayesian Belief Network Classifiers: Algorithms and System. In: Stroulia, E., Matwin, S. (eds.) Advances in Artificial Intelligence. LNCS (LNAI), vol. 2056, pp. 141–151. Springer, Heidelberg (2001)Google Scholar
  10. 10.
    Pena, J., Lozano, J.A., Larranaga, P.: Learning Bayesian Networks for Clustering by Means of Constructive Induction. Machine Learning 47(1), 63–90 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Terziyan, V., Bayesian, A.: Metanetwork. International Journal on Artificial Intelligence Tools 14(3), 371–384 (2005)CrossRefGoogle Scholar
  12. 12.
    Terziyan, V., Vitko, O.: Bayesian Metanetwork for Modelling User Preferences in Mobile Environment. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 370–384. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Terziyan, V., Vitko, O.: Learning Bayesian Metanetworks from Data with Multilevel Uncertainty. In: Bramer, M., Devedzic, V. (eds.) AIAI-2004. Proceedings of the First IFIP International Conference on Artificial Intelligence and Innovations, Toulouse, France, pp. 187–196. Kluwer, Dordrecht (2004)Google Scholar
  14. 14.
    Bouquet, P., Ghidini, C., Giunchiglia, F., Blanzieri, E.: Theories and Uses of Context in Knowledge Representation and Reasoning. In: Akman, V., Bazzanella, C. (eds.) Special Issue on Context, Journal of Pragmatics, vol. 35(3), pp. 455–484. Elsevier, Amsterdam (2003)Google Scholar
  15. 15.
    Ghidini, C., Giunchiglia, F.: Local Models Semantics, or Contextual Reasoning = Locality + Compatibility. Artificial Intelligence 127(2), 221–259 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I.: Web Ontology Language (OWL) Abstract Syntax and Semantics, Tech. report, W3C Febr (2003),
  17. 17.
    Bouquet, P., Giunchiglia, F., Van Harmelen, F., Serafini, L., Stuckenschmidt, H.: Contextualizing Ontologies. Journal of Web Semantics 26, 1–19 (2004)Google Scholar
  18. 18.
    Terziyan, V.: Bayesian Metanetwork for Context-Sensitive Feature Relevance. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds.) SETN 2006. LNCS (LNAI), vol. 3955, pp. 356–366. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Khriyenko, O., Terziyan, V.: A Framework for Context-Sensitive Metadata Description. Intern. Journal of Metadata, Semantics and Ontologies 1(2), 154–164 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Vagan Terziyan
    • 1
  1. 1.Industrial Ontologies Group, Agora Center, University of Jyvaskyla, P.O. Box 35 (Agora), FIN-40014 JyvaskylaFinland

Personalised recommendations