Fostering Multi-Modal Summarization for Trend Information

  • Tsuneaki Kato
  • Mitsunori Matsushita
  • Noriko Kando
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4693)


It is more important than ever to be able to extract relevant information and to understand or review its content quickly. Spotting trends is one such way of understanding or reviewing. We propose multi-modal summarization for trend information as a new technology to help this activity. We also describe the design of a data set that will foster research in the field, and introduce an ongoing unique workshop using this data set.


Semantic Representation Information Extraction Newspaper Article Information Visualization Multimedia Presentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mani, I.: Automatic Summarization. John Benjamins Publishing Co, Amsterdam (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Card, S.K., Mackinlay, J.D., Sheiderman, B.: Information visualization. In: Readings in Information Visualization Using Vision to Think, pp. 1–34. Morgan Kaufman Publishers, Inc, Seattle (1999)Google Scholar
  3. 3.
    Fasciano, M., Lapalme, G.: Postgraphe: A system for the generation of statistical graphics and text. In: Proceedings of 8th International Workshop on Natural Language Generation, pp. 51–60 (1996)Google Scholar
  4. 4.
    Roth, S.F., Mattis, J.: Data characterization for intelligent graphic presentation. In: Proceedings of Conference on Human Factors in Computing Systems, pp. 193–200 (1990)Google Scholar
  5. 5.
    Mani, I., Wilson, G.: Robust temporal processing of news. In: Proceedings of ACL-2000, pp. 69–76 (2000)Google Scholar
  6. 6.
    Voorhees, E.M., Harman, D.K. (eds.): TREC: Experiment and Evaluation in Information Retrieval. The MIT Press, Cambridge (2005)Google Scholar
  7. 7.
    Judge, J., Cahill, A., van Genabith, J.: Questionbank: Creating a corpus of parse-annotated questions. In: Proceedings of COLING/ACL 2006, pp. 497–504 (2006)Google Scholar
  8. 8.
    Kato, T., Matsushita, M., Kando, N.: MuST: A workshop on multimodal summarization for trend information. In: Proceedings of the Fifth NTCIR Workshop Meeting on Evaluation of Information Access Technologies, pp. 556–563 (2005)Google Scholar
  9. 9.
    Shinyama, Y., Sekine, S.: Preemptive information extraction using unrestricted relation discovery. In: Proceesings of HLT-NAACL 2006, pp. 320–327 (2006)Google Scholar
  10. 10.
    Carberry, S., Elzer, S., Green, N., McCoy, K., Chester, D.: Extending document summarization to information graphics. In: Proceedings of the ACL-04 Workshop: Text Summarization Branches Out, pp. 3–9 (2004)Google Scholar
  11. 11.
    Boyd, S.: Trend: A system for generating intelligent descriptions of time series data. In: CIPS-1998. Proceedings of the IEEE International Conference on Intelligent Processing Systems (1998)Google Scholar
  12. 12.
    Sripada, S.G., Reiter, E., Hunter, J., Yu, J., Davy, I.P.: Modeling the task of summarizing time series data using ka techniques. In: Macintosh, A., Moulton, M., Preece, A. (eds.) Applications and Innovations in Intelligent Systems IX, Proceedings of ES2001, pp. 183–916. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Ahmad, S., de Oliveria, P.C.F., Ahmad, K.: Summarization of multimodal information. In: Proceedings of LREC-2004 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Tsuneaki Kato
    • 1
  • Mitsunori Matsushita
    • 2
  • Noriko Kando
    • 3
  1. 1.The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902Japan
  2. 2.NTT Communication Science Laboratories, NTT Corp., 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237Japan
  3. 3.National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430Japan

Personalised recommendations