Advertisement

Modeling Smart Homes for Prediction Algorithms

  • A. Fernández-Montes
  • J. A. Álvarez
  • J. A. Ortega
  • M. D. Cruz
  • L. González
  • F. Velasco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4693)

Abstract

This paper reviews the goals of the Domoweb project and the solutions adopted to achieve them. As a result we enjoy a great support to develop smart home techniques and solutions. As a consequence of the acquired experiences a Smart home model is proposed as a division of four main categories. In relation with the smart home model, we show the essential features a smart environment prediction algorithm should satisfy and a procedure to select relevant information from the model to achieve artificial intelligence based solutions.

Keywords

Prediction Algorithm Ubiquitous Computing Smart Home Artificial Intelligence Technique Smart Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiser, M.: The computer for the 21st century. Scientific American 265(3), 66–75 (1991)CrossRefGoogle Scholar
  2. 2.
    Álvarez, J.A., Cruz, M.D., Fernández, A., Ortega, J.A., Torres, J.: Experiencias en entornos de computación ubica mediante arquitecturas orientadas a servicios. In: JSWEB 2005 (W3C) (2005)Google Scholar
  3. 3.
    Cook, D.J., Youngblood, M., Das, S.K.: A Multi-agent Approach to Controlling a Smart Environment. Designing Smart Homes, 165–182 (2006)Google Scholar
  4. 4.
    Li, J., Bu, Y., Chen, S., Tao, X., Lu, J.: FollowMe: On Research of Pluggable Infrastructure for Context-Awareness. In: Proceedings of the 20th International Conference on Advanced Information Networking and Applications, IEEE, Los Alamitos (2006)Google Scholar
  5. 5.
    Das, S.K., Cook, D.J.: Designing Smart Environments: A Paradigm Based on Learning and Prediction. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Leake, D., Maguitman, A., Reichherzer, T.: Cases, Context, and Comfort: Opportunities for Case-Based Reasoning in Smart Homes. Designing Smart Homes, 109–131 (2006)Google Scholar
  7. 7.
    Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A., Duman, H.: Creating an ambient-intelligence environment using embedded agents. IEEE Intelligent Systems 19 (2004)Google Scholar
  8. 8.
    Choi, J., Shin, D., Shin, D.: Research on Design and Implementation of the Artificial Intelligence Agent for Smart Home Based on Support Vector Machine. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3610, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Roy, N., Roy, A., Das, S.K.: Context-Aware Resource Management in Multi-Inhabitant Smart Homes: A Nash H-Learning based Approach. In: IEEE PERCOM’06 (2006)Google Scholar
  10. 10.
    Yamazaki, T.: Beyond the Smart Home. In: ICHIT’06 (2006)Google Scholar
  11. 11.
    Jiang, L., Llu, D.-Y., Yang, B.: Smart home research. In: Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, pp. 26–29 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • A. Fernández-Montes
    • 1
  • J. A. Álvarez
    • 1
  • J. A. Ortega
    • 1
  • M. D. Cruz
    • 1
  • L. González
    • 1
  • F. Velasco
    • 1
  1. 1.Departamento de lenguajes y sistemas informáticos. ETSI Informática Avda. Reina Mercedes s/n, SevillaUSA

Personalised recommendations