Global Adaptive Request Distribution with Broker

  • Leszek Borzemski
  • Anna Zatwarnicka
  • Krzysztof Zatwarnicki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4693)


This paper presents the application of fuzzy logic and neural networks to HTTP request dispatching performed within a geographically distributed Web system. Web sites serve as a global content delivery system where each Web server can respond to the client request. We propose broker-based system architecture with a global request dispatching algorithm called GARDiB. The algorithm uses the fuzzy-neural decision-making mechanism to assign each incoming request to the server with the least expected response time. The response time include the transmission time over the network, both for the request and for the response, as well as the time elapsed on the server responding to the request. We demonstrate through the simulations that our algorithm is more effective than popular global dispatching policies Round-Robin and Weighted Round-Robin.


Intelligent systems Fuzzy-neural control HTTP request distribution Web service quality Dispatching algorithms Cluster-based architectures Distributed systems Client/server 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borzemski, L., Nowak, Z.: Using the Geographic Distance for Selecting the Nearest Agent in Intermediary-Based Access to Internet Resources. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3683, pp. 261–267. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Borzemski, L., Zatwarnicki, K.: A Fuzzy Adaptive Request Distribution Algorithm for Cluster-Based Web Systems. In: Proc. of 11th PDP Conf., pp. 119–126. IEEE Press, Los Alamitos (2003)Google Scholar
  3. 3.
    Borzemski, L., Zatwarnicki, K.: Using Adaptive Fuzzy-Neural Control to Minimize Re-sponse Time in Cluster-Based Web Systems. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS (LNAI), vol. 3528, pp. 63–68. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Borzemski, L., Zatwarnicki, K.: Fuzzy-Neural Web Switch Supporting Differentiated Service. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4252, pp. 195–203. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Cardellini, V., Casalicchio, E., Colajanni, M., Mambelli, M.: Web Switch Support for Differentiated Services. ACM Perf. Eval. Rev. 29(2), 14–19 (2001)CrossRefGoogle Scholar
  6. 6.
    Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The State of the Art in Locally Distributed Web-Server Systems. ACM Comp. Surv. 34(2), 263–311 (2002)CrossRefGoogle Scholar
  7. 7.
    Casalicchio, E., Colajanni, M.: A Client-Aware Dispatching Algorithm for Web Clusters Providing Multiple Services. In: Proc. WWW10, pp. 535–544 (2001)Google Scholar
  8. 8.
    Lee, K-M., Kwak, D-H., Leekwang, H.: Tuning of fuzzy models by fuzzy neural networks. Fuzzy Sets and Systems 76(1), 47–61 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mamdami, E.H.: Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis. IEEE Trans. on Computers 26(12), 1182–1191 (1977)CrossRefGoogle Scholar
  10. 10.
    Menasce, D., Almeida, V.: Capacity Planning for Web Performance. Metrics, Models, and Methods. Prentice Hall, New York (1998)Google Scholar
  11. 11.
    Pai, V.S., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwaenpoel, W., Nahum, E.: Locality-Aware Request Distribution in Cluster-Based Network Servers. SIGOPS Oper. Syst. Rev. 32(5), 205–216 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Leszek Borzemski
    • 1
  • Anna Zatwarnicka
    • 2
  • Krzysztof Zatwarnicki
    • 2
  1. 1.Institute of Information Science and Engineering, Wroclaw University of Technology, WroclawPoland
  2. 2.Faculty of Electrical Engineering, Automatic Control and Computer Science, Opole University of Technology, OpolePoland

Personalised recommendations