Advertisement

Geometrical Representation of Quantity Space and Its Application to Robot Motion Description

  • Honghai Liu
  • David J. Brown
  • George M. Coghill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4693)

Abstract

We are interested in the problem of intelligent connection of perception to action, i.e., the connection between numerical data and cognitive functions. In this paper we extend conventional quantity space into that in a geometric vector context and then propose quantity arithmetic for quantity vector computation in a normalized quantity space. An example of motion abstraction of a Puma robot is provided to demonstrate the effectiveness of the proposed method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brady, M.: Artificial intelligence and robotics. Artificial intelligence 26, 79–121 (1985)CrossRefGoogle Scholar
  2. 2.
    Coradeschi, S., Saffiotti, A.: Journal of robotics and autonomous systems, special issue on perceptual anchoring (2003)Google Scholar
  3. 3.
    Forbus, K.: Qualitative process theory. Artificial Intelligence 24, 85–168 (1984)CrossRefGoogle Scholar
  4. 4.
    Kuipers, B.: Qualitative reasoning. MIT Press, Cambridge (1994)Google Scholar
  5. 5.
    Coghill, G.M.: Mycroft: A Framework for Constraint-Based Fuzzy Qualitative Reasoning. PhD thesis, Heriot-Watt University (1996)Google Scholar
  6. 6.
    Shen, Q., Leitch, R.: Fuzzy qualitative simulation. IEEE Transactions on Systems, Man, and Cybernetics 23(4), 1038–1061 (1993)CrossRefGoogle Scholar
  7. 7.
    Ali, A., Dubois, D., Prade, H.: Qualitative reasoning based on fuzzy relative orders of magnitude. IEEE transactions on Fuzzy Systems 11(1), 9–23 (2003)CrossRefGoogle Scholar
  8. 8.
    Neumaier, A.: Interval methods for systems of equations. In: Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge (1990)Google Scholar
  9. 9.
    Rump, S.: Fast and parallel interval arithmetic. BIT 39(3), 534–554 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ohlbach, H., Koehler, J.: Modal logics, description logics adn arithmetic. Artificial Intelligence 109(1-2), 1–31 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Yager, R., Rybalob, A.: Full reinforcement operators in aggregation techniques. IEEE Transactions on Systems, Man and Cybernetics 28, 757–769 (1998)CrossRefGoogle Scholar
  12. 12.
    Carlsson, C., Fuller, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems 122, 315–326 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, H., Brown, D.: An extension to fuzzy qualitative trigonometry and its application to robot kinematics. In: Proc. IEEE International Conference on Fuzzy Systems, Canada, pp. 1111–1118 (2006)Google Scholar
  14. 14.
    Liu, H., Coghill, G.: Fuzzy qualitative trigonometry. In: Proc. IEEE International Conference on Systems, Man and Cybernetics, Hawaii, USA (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Honghai Liu
    • 1
  • David J. Brown
    • 1
  • George M. Coghill
    • 2
  1. 1.Institute of Industrial Research, The University of Portsmouth, Portsmouth PO1 3HE, EnglandUK
  2. 2.Department of Computing Science, The University of Aberdeen, Aberdeen, AB24 3UE, ScotlandUK

Personalised recommendations