Investigation on Fitting Graph Based on Fractal Dimension’s Pretreatment

  • Min Jin
  • Qin Wang
  • Lifeng Xi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4693)


In this paper, we investigate an algorithm, which integrates the Box dimension’s pretreatment with self-affine fractal interpolation function (AFIF). As a result of our experiments, we conclude that the algorithm allows us to fit graphs of various complexities.


Fractal interpolation Box dimension AFIF fitness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barnsley, M.F., Elton, J., Hardin, D., Massopust, P.: Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 20, 1218–1242 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barnsley, M.F., Elton, J.H., Hardin, D.P.: Recurrent iterated function systems. Constr. Approx. 5, 3–31 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. J. Approx. Theory. 57, 14–34 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dalla, L., Drakopoulos, V.: On the parameter identification problem in the plane and the polar fractal interpolation functions. J. Approx. Theory. 101, 202–289 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Mazel, D.S., Hayes, M.H.: Using iterated function system to model discrete sequences. IEEE Trans. on Signal 40, 1724–1734 (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Min Jin
    • 1
  • Qin Wang
    • 1
  • Lifeng Xi
    • 1
  1. 1.School of Computer Science and Information Technology , Zhejiang Wanli University, Ningbo 315100P.R. China

Personalised recommendations