Skip to main content

Modelling a Team of Radiologists for Lung Nodule Detection in CT Scans

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2007)

Abstract

This paper describes a system for automatic detection of pulmonary nodules in lung CT (Computed Tomography) images. After modelling the activity of a single radiologist as two subsequent phases, namely, the regions of interest (ROIs) detection phase and the nodule detection phase, we built a system which emulates a team of radiologists. This is achieved by providing a further phase of collaboration and opinion exchange among the experts at the end of each of the previous phases. We also present experimental results, based on the ROC convex hull method, which show how the team of radiologists obtains better performance than the single best radiologist in both phases. In particular, we achieved a sensitivity of 92.48% against a specificity of about 83.54% in the nodule detection phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greenlee, R.T., Murray, T., Bolden, S., Wingo, P.A.: Cancer Statistics. CA Cancer J. Clin. 50, 7–33 (2000)

    Article  Google Scholar 

  2. Swensen, S.J., Jett, J.R., Hartman, T.E., Midthun, D.E., Sloan, J.A., Sykes, A-M., Aughenbaugh, G.L., Clemens, M.A.: Lung Cancer Screening with CT: Mayo Clinic Experience. Radiology 226(3), 756–761 (2003)

    Article  Google Scholar 

  3. Armato III, S.G.: CAD Dissects Growing Volume of Data from Lung CT exams, http://www.diagnosticimaging.com/advancedct2003/

  4. Brown, M.S., et al.: Method for segmenting chest CT image data using an anatomical model: Preliminary results. IEEE Trans. Med. Imag. 16(6), 828–839 (1997)

    Article  Google Scholar 

  5. Pham, D.L.: Spatial Models for Fuzzy Clustering. Computer Vision and Image Understanding 84, 285–297 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

    Article  Google Scholar 

  7. Pratt, W.K.: Digital Image Processing. John Wiley & Sons, Chichester (2001)

    Google Scholar 

  8. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition 34(2), 299–314 (2001)

    Article  MATH  Google Scholar 

  10. Kuncheva, L.I., Bezdek, J.C., Sutton, M.A.: On combining multiple classifiers by fuzzy templates. In: Proceedings of Nafips’98, Pensacola, Florida, Pensacola, Florida, pp. 193–197 (1998)

    Google Scholar 

  11. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and their application to handwritten recognition. IEEE Transactions on Systems, Man, and Cybernetics 22, 418–435 (1992)

    Article  Google Scholar 

  12. Adams, N.M., Hand, D.J.: Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition 32(7), 1139–1147 (1997)

    Article  Google Scholar 

  13. Provost, F., Fawcett, T.: Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions. In: Proceedings of Third International Conference on Knowledge Discovery and Data Mining, Menlo Park, CA, pp. 43–48. AAAI Press, Stanford, California, USA (1997)

    Google Scholar 

  14. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Machine Learning 42(3), 203–231 (2001)

    Article  MATH  Google Scholar 

  15. Gurcan, M.N., Sahiner, B., Petrick, N., Chan, H-P., Kazerooni, E.A., Cascade, P.N., Hadjiiski, L.: Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system. Med. Phys. 29(11), 2552–2558 (2002)

    Article  Google Scholar 

  16. Armato III, S.G., Giger, M.L., MacMahon, H.: Automated detection of lung nodules in CT scans: preliminary results. Med. Phys. 28(8), 1552–1561 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bruno Apolloni Robert J. Howlett Lakhmi Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antonelli, M., Cococcioni, M., Frosini, G., Lazzerini, B., Marcelloni, F. (2007). Modelling a Team of Radiologists for Lung Nodule Detection in CT Scans. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74819-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74819-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74817-5

  • Online ISBN: 978-3-540-74819-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics