Skip to main content

Therapeutic Use of Release-Modifying Drugs

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 184))

Presynaptic inhibitory or facilitatory autoreceptors are targets for the endogenous neurotransmitter of the respective neuron, and also for exogenous agonists, partial agonists and antagonists which can produce pharmacological actions through changes in transmitter release. In addition, presynaptic inhibitory or facilitatory heteroreceptors can also be acted upon by exogenous agonists, partial agonists or antagonists to induce changes in transmitter release with useful therapeutic effects. This article summarizes drugs that are known or likely to produce their therapeutic effects through presynaptic modulation of neurotransmitter release. Included are drugs acting on α and β adrenoceptors, dopamine receptors, angiotensin, opioid, cannabinoid, and nicotinic acetylcholine receptors. Also discussed are changes in presynaptic receptor mechanisms produced by drugs that inhibit transmitter re-uptake.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler-Graschinsky E, Langer SZ (1975) Possible role of a β-adrenoceptor in the regulation of noradrenaline release by nerve stimulation through a positive feedback mechanism. Br J Pharmacol 53:43-50

    PubMed  CAS  Google Scholar 

  • Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586-600

    PubMed  CAS  Google Scholar 

  • Angel I, Langer SZ (1988 Adrenergic induced hyperglycemia in anaesthetized rats: involvement of peripheral α-2 adrenoceptors. Eur J Pharmacol 154 :191-6

    Article  PubMed  CAS  Google Scholar 

  • Angel I, Schoemaker H, Arbilla S, Galzin AM, Berry C, Niddam R, Pimoule C, Sevrin M, Wick A, Langer SZ (1992) SL 84.0418: A novel potent and selective α-2 adrenoceptor antagonist: I. In vitro pharmacological profile. J Pharmacol Exp Ther 263:1327-33

    PubMed  CAS  Google Scholar 

  • Angel I, Burcelin R, Prouteau M, Girard J, Langer SZ (1996) Normalization of insulin secretion by a selective α-2 adrenoceptor antagonist restores GLUT-4 glucose transporter expression in adipose tissue of type II diabetic rats. Endocrinology 137:1-6

    Article  Google Scholar 

  • Arbilla S, Langer SZ (1978) Morphine and β-endorphin inhibit release of noradrenaline from cerebral cortex but not of dopamine from rat striatum. Nature 271:559-61

    Article  PubMed  CAS  Google Scholar 

  • Arrang JM, Garbarg M, Lancelot JC, Lecomte J, Pollard H, Robba M, Shunack W, Schwartz JC (1987) Highly potent and selective ligands for histamine H3-receptors. Nature 327:117-23

    Article  PubMed  CAS  Google Scholar 

  • Barret RJ, Lockhandwala MF (1981) Presynaptic dopamine receptor stimulation in the cardiovascular system actions of lergotrile. J Pharmacol Exp Ther 217:660-5

    Google Scholar 

  • Bauer S, Moyse E, Jourdan F, Colpaert F, Martel JC, Marien M (2003) Effects of the α-2 adrenoceptor antagonist dexefaroxan on neurogenesis in the olfactory bulb of the adult rat in vivo: selective protection agains neuronal death. Neuroscience 117:281-91

    Article  PubMed  CAS  Google Scholar 

  • Bousquet P, Feldman J (1999) Drugs acting on imidazoline receptors. A review of their pharmacology, their use in blood pressure control and their potential interest in cardioprotection. Drugs 58:799-812

    Article  PubMed  CAS  Google Scholar 

  • Borkowski KA (1990) Presynaptic receptors in hypertension. Ann NY Acad Sci 604:389-97

    Article  PubMed  CAS  Google Scholar 

  • Brotzu G, Falchi S, Mannu B, Montisci R, Petruzzo P, Staico R (1989) The importance of presynaptic β receptors in Raynaud’s disease. J Vasc Surg 9:767-71

    Article  PubMed  CAS  Google Scholar 

  • Bylund DB, Eikenberg C, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Trendelenburg U (1994) Adrenoceptor subtypes. Pharmacol Rev 46:121-36

    PubMed  CAS  Google Scholar 

  • Cavero I, Lorrain J, Di Paola ED, Lhoste F, Payen B, Dennis T, Scatton B (1985) Pharmacological, hemodynamic and biochemical mechanisms involved in the blood pressure lowering effects of pergolide, in normotensive and hypertensive dogs. J Pharmacol Exp Ther 235:798-809

    PubMed  CAS  Google Scholar 

  • Corrigall WA, Franklin KBJ, Coen KM, Clarke PBS (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107:285-9

    Article  PubMed  CAS  Google Scholar 

  • Cubeddu LX, Barnes EM, Langer SZ, Weiner N (1974) Release of norepinephrine and dopamineβ-hydroxylase by nerve stimulation. I. Role of neuronal and extraneuronal uptake and of αpresynaptic receptors. J Pharmacol Exp Ther 190:431-50

    PubMed  CAS  Google Scholar 

  • Dabire H, Dausse JP, Mouille P, Fournier B, Cardot A, Meyer P, Schmitt H (1986) Pharmacological properties of the enantiomers of idazoxan: possible separation between their α-adrenoceptor blocking effects. Clin Exp Hypertens A 8:387-409

    Article  PubMed  CAS  Google Scholar 

  • De Boer T, Nefkens F, Van Helvoirt A, Van Delft AML (1996) Differences in modulation of noradrenergic and serotonergic transmission by the α-2 adrenoceptor antagonists, mirtazapine, mianserine and idazoxan. J Pharmacol Exp Ther 277:852-60

    PubMed  Google Scholar 

  • Domenici MR, Azad SC, Marsicano G, Schierloh A, Wotjak CT, Dodt HU, Zieglgansberger W, Lutz B, Rammes G (2006) Cannabinoid receptor type 1 located on presynaptic terminals of principal neurons in the forebrain controls glutamatergic synaptic transmission. J Neurosci 26:5794-9

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich ML, Langer SZ (1974) Negative feedback regulation of noradrenaline release by nerve stimulation in the perfused cat’s spleen: differences in potency of phenoxybenzamine in blocking the pre and post-synaptic adrenergic receptors. J Physiol 237:505-19

    PubMed  CAS  Google Scholar 

  • Dubocovich ML, Langer SZ (1980a) Dopamine and α-adrenoceptor agonists inhibit neurotransmission in the cat spleen through different presynaptic receptors. J Pharmacol Exp Ther 212:144-52

    CAS  Google Scholar 

  • Dubocovich ML, Langer SZ (1980b) Pharmacological differentiation of presynaptic inhibitory αadrenoceptors and opiate receptors in the cat nictitating membrane. Br J Pharmacol 70:383-93

    CAS  Google Scholar 

  • Enero MA, Langer SZ (1975) Inhibition by dopamine of 3H-noradrenaline release elicited by nerve stimulation in the isolated cat’s nictitating membrane. Naunyn-Schmiedeberg’s Arch Pharmacol 289:179-203

    Article  CAS  Google Scholar 

  • Giovanni B, Giuseppina CM, Susanna F, Roberto M (1984) Altered regulator mechanisms of presynaptic adrenergic nerve: a new physiopathological hypothesis in Raynaud’s disease. Microvasc Res 27:110-13

    Article  PubMed  CAS  Google Scholar 

  • G öbel I, Trendelenburg AU, Cox SL, Meyer A, Starke K (2000) Electrically evoked release of 3Hnoradrenaline from mouse cultured sympathetic neurons: release-modulating heteroreceptors. J Neurochem 75:2087-94

    Article  Google Scholar 

  • Grossman F, Potter WZ, Brown EA, Maislin G (1999) A double-blind study comparing idazoxan and bupropion in bipolar depressed patients. J Affect Disord 56:237-43

    Article  PubMed  CAS  Google Scholar 

  • Hamed AT, Jandhyala BS, Ginos JZ, Lockhandwala MF (1981) Presynaptic dopamine receptors and α-adrenoceptors as mediators of the bradychardic action of N-n-propyl-N-n-butyl dopamine. Eur J Pharmacol 74:83-90

    Article  PubMed  CAS  Google Scholar 

  • Harkany T, Guzman M, Galve-Ropert I, Berghuis P, Devi LA, Mackie K (2007) The emerging functions of endocannabinoid signaling during CNS development Trends Pharmacol Sci 28:83-92

    Article  PubMed  CAS  Google Scholar 

  • Hertel P, Nomikos GG, Svensson TH (1999) Idazoxan preferentially increases dopamine output in the rat medial prefrontal cortex at nerve terminal level. Eur J Pharmacol 371:153-8

    Article  PubMed  CAS  Google Scholar 

  • Hoefke W, Kobinger W (1966) Pharmakologische Wirkungen des 2-(2,6 dichlorphenylamino)2-imidazolin-hydrochlorids, einer neuen, antihypertensiven Substance. Arzneimittelforschung 16:1038-50

    PubMed  CAS  Google Scholar 

  • Hou M, Kanje M, Longmore J, Tajti J, Uddman R, Edvinsson L (2001) 5-HT(1B) and (1D) receptors in the human trigeminal ganglion:co-localization with calcitonin gene-related peptide, substance P and nitric oxide synthase. Brain Res 909:112-20

    Article  PubMed  CAS  Google Scholar 

  • Izumi H, Nakamura I, Karita K (1995) Effects of clonidine and yohimbine on parasympathetic reflex salivation and vasodilatation in cat SMG. Am J Physiol 268:R1197-R1202

    Google Scholar 

  • Jessel TM, Iversen LL (1977) Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 268:549-51

    Article  Google Scholar 

  • Kane JM, Carson WH, Saha AR, Saha AR, McQuade RD, Ingenito GG, Zumbroff DL, Ali MW (2002) Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder. J Clin Psychiat 63:763-71

    CAS  Google Scholar 

  • Kasper S, Lerman MN, McQuade RD, Saha A, Carson WH, Ali M, Archibald D, Ingenito G, Marcus R, Pigott T (2003). Efficacy and safety of aripiprazole vs. haloperidol for long-term maintenance treatment following acute relapse of schizophrenia. Int J Neuropsychopharmacol 6:325-37

    Article  PubMed  CAS  Google Scholar 

  • Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, Frend TF (1999) Presynaptically located CB1 Cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal neurons. J Neurosci 19:4544-58

    PubMed  CAS  Google Scholar 

  • Kobinger W (1978) Central α adrenergic systems as targets of action for hypotensive drugs. Rev Physiol Biochem Pharmacol 8:40-100

    Google Scholar 

  • Langer SZ (1974) Presynaptic regulation of catecholamine release. Biochem Pharmacol 23: 1793-1800

    Article  PubMed  CAS  Google Scholar 

  • Langer SZ (1978) Presynaptic receptors. Nature 275:479-80

    Article  PubMed  CAS  Google Scholar 

  • Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32:337-62

    Google Scholar 

  • Langer SZ (1997) 25 Years since the discovery of presynaptic receptors:present knowledge and future perspectives. Trends Pharmacol Scie 18:95-9

    Article  CAS  Google Scholar 

  • Langer SZ, Cavero I, Massingham R (1980) Recent developments in noradrenergic neurotransmission and its relevance to the mechanism of action of certain antihypertensive agents. Hypertension 2:372-82

    PubMed  CAS  Google Scholar 

  • Liang YC, Huang CC, Hsu KS, Takahashi T (2003) Cannabinoid-induced presynaptic inhibition at the primary afferent trigeminal synapse of juvenile rat brainstem slices. J Physiol 555:85-96

    Article  PubMed  CAS  Google Scholar 

  • Litman RE, Su TP, Potter WZ, Hong WW, Pickar D (1996) Idazoxan and response to typical neuroleptics in treatment-resistant schizophrenia. Comparison with the atypical neuroleptic, clozapine. Br J Psychiatr 168:571-9

    Article  CAS  Google Scholar 

  • Lorrain J, Angel A, Duval N, Eon MT, Oblin A, Langer SZ (1992) Adrenergic and noradrenergic cotransmitters inhibit insulin secretion during sympathetic stimulation in dogs. Am J Physiol 263:E72-E76

    PubMed  CAS  Google Scholar 

  • Marshall DL, Redfern PH, Wonnacott S (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naïve and chronic nicotine-treated rats. J Neurochem 68:1511-19

    Article  PubMed  CAS  Google Scholar 

  • Mongeau R, Blier P, De Montigny C (1997) The serotonergic and noradrenergic systems of the hippocampus: their interactions and the effects of antidepressant treatments. Brain Res Rev 23:145-95

    Article  PubMed  CAS  Google Scholar 

  • Montel H, Starke K, Taube HD (1975) Morphine tolerance and dependence in noradrenaline neurons of the rat cerebral cortex. Naunyn-Schmiedeberg’s Arch Pharmacol 258:415-26

    Article  Google Scholar 

  • Potkin SG, Saha AR, Kujawa MJ, Carson WH, Ali M, Stock E, Strinfellow J, Ingenito G, Marder SR (2003) Aripiprazole, an antipsychotic with a novel mechanism of action and risperidone vs. placebo in patients with schizophrenia and psychoaffective disorder. Arch Gen Psychiat 60:681-90

    Article  PubMed  CAS  Google Scholar 

  • Raiteri M (2006) Functional pharmacology in human brain. Pharmacol Rev 58:162-93

    Article  PubMed  CAS  Google Scholar 

  • Rizk P, Salazar J, Raisman-Vozari R, Marien M, Ruberg M, Colpaert F, Debeir T (2006) The α2 adrenoceptor antagonist dexefaroxan enhances hippocampal neurogenesis by increasing the survival and differentiation of new granule cells. Neuropharmacology 31:1146-57

    CAS  Google Scholar 

  • Ronken E, Mulder AH, Schoffelmeer ANM (1993) Chronic activation of mu and kappa-opioid receptors in cultured catecholaminergic neurons from rat brain causes neuronal supersensitivity without receptor desensitization. J Pharmacol Exp Ther 268:595-9

    Google Scholar 

  • Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22:565-572

    Article  PubMed  CAS  Google Scholar 

  • Schmidt ME, Risinger RC, Hauger RL, Potter WZ (1997) Responses to α2 adrenoceptor blockade by idazoxan in healthy male and female volunteers. Psychoneuroendocrinology 22:177-88

    Article  PubMed  CAS  Google Scholar 

  • Smith D, Hill RG, Edvinsson L, Longmore J (2002) An immunohistochemical investigation of human trigeminal nucleus caudalis: CGRP, substance P and 5-HT1D-receptor immunoreactivities are expressed by trigeminal sensory fibers. Cephalalgia 22 :424-31

    Article  PubMed  CAS  Google Scholar 

  • Starke K (2001) Presynaptic autoreceptors in the third decade:focus on α-2 adrenoceptors. J Neurochem 78:685-93

    Article  PubMed  CAS  Google Scholar 

  • Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG, Hawkins M, Rao SM, Bandettini PA, Bloom AS (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatr 155:1009-15

    PubMed  CAS  Google Scholar 

  • Svensson TH (2000) Brain noradrenaline and the mechanisms of action of antidepressant drugs. Acta Psychiatrica Scandinavica Supplementum 402:18-27.

    Article  PubMed  CAS  Google Scholar 

  • Svensson TH, Usdin T (1978) Feedback inhibition of brain noradrenaline neurons by tricyclic antidepressants: α-receptor mediation. Science 202:1089-91

    Article  PubMed  CAS  Google Scholar 

  • Svensson TH, Bunney BS, Aghajanian G (1975) Inhibition of both noradrenergic and serotonergic neurons in the brain by the α-adrenergic agonist clonidine. Brain Res 92:291-306

    Article  PubMed  CAS  Google Scholar 

  • Szabo B (2002) Imidazoline antihypertensive drugs: a critical review on their mechanism of action. Pharmacol Therapeut, 93:1-35

    Article  CAS  Google Scholar 

  • Szabo B, Schlicker E (2005) Effects of cannabinoids on neurotransmission. Handb Exp Pharmacol 168:327-65

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg U (1957) The action of morphine on the superior cervical ganglion and on the nictitating membrane of the cat. Br J Pharmacol 12:79-85

    CAS  Google Scholar 

  • Trendelenburg AU, Philipp M, Meyer A, Klebroff W, Hein L, Starke K (2003) All three α2 adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons. NaunynSchmiedeberg’s Arch Pharmacol 368:504-12

    Article  CAS  Google Scholar 

  • Urban R, Szabo B, Starke K (1995) Involvement of peripheral presynaptic inhibition in the reduction of sympathetic tone by moxonidine, rilmenidine and UK 14304. Eur J Pharmacol 282:29-37

    Article  PubMed  CAS  Google Scholar 

  • Wadenberg ML, Wiker C, Svensson TH (2007) Enhanced efficacy of both typical and atypical antipsychotic drugs by adjunctive α-2 adrenoceptor blockade: experimental evidence. Int J Neuropsychopharmacol 10:191-202

    Article  PubMed  CAS  Google Scholar 

  • Williamson DJ, Hargreaves RJ, Hill RJ, Shepheard SL (1997) Sumatriptan inhibits neurogenic vasodilation of dural blood vassels in the anaesthetized rat—intravital microscope studies. Cephalalgia 17:525-31

    Article  PubMed  CAS  Google Scholar 

  • Williamson DJ, Hill RG, Shepheard SL, Hargreaves RJ (2001) The anti-migrane 5-HT (1B/1D) agonist rizatriptan inhibits neurogenic dural vasodilation in anaesthetized guinea-pigs. Br J Pharmacol 133:1029-34

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langer, S.Z. (2008). Therapeutic Use of Release-Modifying Drugs. In: Südhof, T.C., Starke, K. (eds) Pharmacology of Neurotransmitter Release. Handbook of Experimental Pharmacology, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74805-2_17

Download citation

Publish with us

Policies and ethics