Abstract
Linear feedback shift register(LFSR) sequencces can be used to shorten the representation of the elements of a finite field. We employ n-stage LFSR sequence to construct an efficient blind signature scheme where main computation operations are performed in GF(q) and there do not need any exponentiation in its extension field GF(q n).
Keywords
- Linear Feedback Shift Register
- Blind Signature
Supported by NSFC(60573030,60673076) and NLMCSFC(9140C1103010602).
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Giuliani, K., Gong, G.: New LFSR-based cryptosystems and the trace discrete logrithm problem (Trace-DLP). In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, Springer, Heidelberg (2005)
Golomb, S.: Shift register sequences. Aegean Park, Laguna Hills, CA (1982)
Li, X., Zheng, D., Chen, K.: LFSR-based signatures with message recovery. Intenational Journal of Network Security 4(3), 266–270 (2007)
Chaum, D.: Blind signatures for untreaceable payments. In: Crypto 82 (1982)
Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)
Tan, C., Yi, X., Siew, C.: On the n-th order shift register based discrete logrithm. IEICE Transaction on Fundamentals E86-A, 1213–1216 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, X., Zheng, D., Chen, K. (2007). Efficient Blind Signatures from Linear Feedback Shift Register. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2007. Lecture Notes in Computer Science, vol 4674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74780-2_57
Download citation
DOI: https://doi.org/10.1007/978-3-540-74780-2_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74779-6
Online ISBN: 978-3-540-74780-2
eBook Packages: Computer ScienceComputer Science (R0)
