Advertisement

Impact of Dynamic Growing on the Internet Degree Distribution

  • Rogelio Ortega Izaguirre
  • Eustorgio Meza Conde
  • Claudia Gómez Santillán
  • Laura Cruz Reyes
  • Tania Turrubiates López
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4743)

Abstract

A great amount of natural and artificial systems can be represented as a complex network, where the entities of the system are related of non-trivial form. Thus, the network topology is the pattern of the interactions between entities. The characterization of complex networks allows analyzing, classifying and modeling the topology of complex networks. The degree distribution is a characterization function used in the analysis of complex networks. In this work a comparative study of the degree distribution for three different instances of the Internet was carried out, with information about the interconnection of domains. The Internet has a degree distribution power-law, that is, it has a great amount of weakly connected domains while a few domains have a great number of connections. Our results show that Internet has a dynamic growing maintaining the degree distribution power-law through the time, independently of the growth in the number of domains and its connections.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Barabási, A.L.: Statistical Mechanics of Complex Networks. Reviews of Modern Physics 74(1), 47–97 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Maslov, S., Sneppen, K., Zaliznyak, A.: Detection of topological patterns in Complex Networks: Correlation profile of the Internet. Physica A 333, 529–540 (2004)CrossRefGoogle Scholar
  3. 3.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationship on the internet topology. ACM SIGCOMM Computer Communication Review. 29(4), 251–262 (1999)CrossRefGoogle Scholar
  4. 4.
    Latora, V., Marchiori, M.: Efficient Behavior of Small World Networks. Physical Review Letters 87(19) (2001)Google Scholar
  5. 5.
    Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in power law network. Physical Review E 64, 046135-1– 046135-8 (2001)Google Scholar
  6. 6.
    Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science, 509–512 (1999)Google Scholar
  7. 7.
    National Laboratory for Applied Network Research. Routing data. Supported by NSF (2005), http://moat.nlanr.net
  8. 8.
    Albert, R., Barabási, A.L.: Statistical Mechanics of Complex Networks. Reviews of Modern Physics 74(1), 47–97 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs. In: Handbook of Graphs and Networks, pp. 1–32. Wiley-VCH, Berlin (2002)CrossRefGoogle Scholar
  11. 11.
    Barabási, A.L., Albert, R., Jeong, H.: Mean-Field theory for scale-free random networks. Physica A. 272, 173–189 (1999)CrossRefGoogle Scholar
  12. 12.
    Bollobás, B., Riordan, O.M.: The diameter of Scale-free Random Graphs. Hungary 24, 5–34 (2004)zbMATHGoogle Scholar
  13. 13.
    Pierce, G.B., Deryk, O.: Popularity Based Random Graph Models Leading to a Scale-free Degree Distribution. Discrete Mathematics 282, 53–68 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Andrew, T., Upfal, E.: Stochastic models for the web graph. In: Symposium on Foundations of Computer Science, pp. 57–65 (2000)Google Scholar
  15. 15.
    Cooper, C., Frieze, A.: A General Model of Web Graphs. Random Structures & Algorithms 22, 311–335 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Quian, C., Hyunseok, C., Ramesh, G., Sugih, J., Scott, J.S., Walter, W.: The Origin of Power Laws in Internet Topologies Revisited. In: Infocom 2002, Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE., pp. 608–617. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  17. 17.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world network. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  18. 18.
    Costa, L., Rodrigues, F.A., Travieso, G., Villas, P.R.: Characterization of Complex Networks: A survey of measurements (2006), http://arxiv.org/abs/cond-mat/0505185
  19. 19.
    Bélla, B.: Random Graphs, p. 34. Cambridge University Press, Cambridge (2001)Google Scholar
  20. 20.
    Liu, Z., Lai, Y., Ye, N., Dasgupta, P.: Connectivity distribution and attack tolerance of general networks with both preferential and random attachments. Physics Letters A 303, 337–344 (2003)CrossRefGoogle Scholar
  21. 21.
    Amaral, L.A.N., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small world networks. Proceedings of the National Academy of Sciences 97(21), 11149–11152 (2000)CrossRefGoogle Scholar
  22. 22.
    Sen, P., Dasgupta, S., Chatterjee, A., Sreeram, P.A., Mukherjee, G., Manna, S.S.: Small-world properties of the Indian Railway network. Physical Review E 67 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rogelio Ortega Izaguirre
    • 1
  • Eustorgio Meza Conde
    • 1
  • Claudia Gómez Santillán
    • 1
    • 2
  • Laura Cruz Reyes
    • 2
  • Tania Turrubiates López
    • 2
  1. 1.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA). Carretera Tampico-Puerto Industrial Altamira, Km. 14.5. Altamira, Tamaulipas. Teléfono: 01 833 2600124 
  2. 2.Instituto Tecnológico de Ciudad Madero (ITCM). 1ro. de Mayo y Sor Juana I. de la Cruz s/n CP. 89440, Tamaulipas, México.Teléfono: 01 833 3574820 Ext. 3024 

Personalised recommendations