Advertisement

Evaluating Coupled Selection Equations for Dynamic Task Assignment Using a Behavior Framework

  • R. Lafrenz
  • F. Schreiber
  • O. Zweigle
  • M. Schanz
  • H. Rajaie
  • U. -P. Käppeler
  • P. Levi
  • J. Starke
Part of the Informatik aktuell book series (INFORMAT)

Abstract

In this paper we focus on methods for a reliable and robust mechanism to distribute roles among a team of cooperating robots. In previous work, we showed the principal applicability of a novel approach based on self organization using coupled selection equations. To show the applicability in the robocup scenario we used a simple scenario to assign the roles attacker and defender. In this paper we present the application of the novel approach to more realistic and complex scenarios like kick-off or pass play. One of the critical parts in this method is the parameterization of utility and activation functions used to determine the additional parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Lötzsch, J. Bach, H.-D. Burkhard, and M. Jüngel. Designing agent behavior with the extensible agent behavior specification language xabsl. In 7th International Workshop on RoboCup 2003 (Robot World Gup Soccer Games and Conferences, 2003.Google Scholar
  2. 2.
    J. Starke. Kombinatorische Optimierung auf der Basis gekoppelter Selektionsgleichungen. PhD thesis, Universität Stuttgart, Verlag Shaker, Aachen, 1997.Google Scholar
  3. 3.
    G. Nicolis and I. Prigogine. Self-Organization in Non-Equilibrium Systems. Wiley, New York, 1977.Google Scholar
  4. 4.
    H. Haken. Advanced Synergetics. Springer Series in Synergetics. Springer-Verlag, Heidelberg, Berlin, New York, 1983.MATHGoogle Scholar
  5. 5.
    J. Starke and M. Schanz. Dynamical system approaches to combinatorial optimization. In D.-Z. Du and P. Pardalos, editors, Handbook of Combinatorial Optimization, volume 2, pages 471–524. Kluwer Academic Publisher, Dordrecht, Boston, London, 1998.Google Scholar
  6. 6.
    P. Molnár and J. Starke. Control of distributed autonomous robotic systems using principles of pattern formation in nature and pedestrian behaviour. IEEE Transaction on Systems, Men and Cybernetics: Part B, 31(3): 433–436, 2001.CrossRefGoogle Scholar
  7. 7.
    J. Starke. Dynamical assignments of distributed autonomous robotic systems to manufacturing targets considering environmental feedbacks. In Proceedings of the 17th IEEE International Symposium on Intelligent Control (ISIC’02), pages 678–683, Vancouver, 2002.Google Scholar
  8. 8.
    M. Becht, T. Buchheim, P. Burger, G. Hetzel, G. Kindermann, R. Lafrenz, N. Oswald, M. Schanz, M. Schulé, P. Molnár, J. Starke, and P. Levi. Three-index assignment of robots to targets: An experimental verification. In IAS-6, 2000.Google Scholar
  9. 9.
    J. Starke, C. Ellsässer, and Fukuda. Self-organized control in cooperative robots using pattern formation principles. submitted, 2005.Google Scholar
  10. 10.
    M. Schanz, J. Starke, R. Lafrenz, O. Zweigle, M. Oubbati, H. Rajaie, F. Schreiber, T. Buchheim, U.-P. Käppeler, and P. Levi. Dynamic Task Assignment in a Team of Agents. In P. Levi et al., editor, Autonome Mobile Systeme, pages 11–18. Springer, 2005.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • R. Lafrenz
    • 1
  • F. Schreiber
    • 1
  • O. Zweigle
    • 1
  • M. Schanz
    • 1
  • H. Rajaie
    • 1
  • U. -P. Käppeler
    • 1
  • P. Levi
    • 1
  • J. Starke
    • 2
  1. 1.Institute of Parallel and Distributed Systems (IPVS)University of StuttgartStuttgartGermany
  2. 2.Department of Mathematics, MatematiktorvetTechnical University of DenmarkLyngbyDenmark

Personalised recommendations