Skip to main content

Convection and Control in Melt Growth of Bulk Crystals

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

Abstract

During melt growth of bulk crystals, convection in the melt plays a critical role in the quality of the grown crystal. Convection in the melt can be induced by buoyancy force, rotation, surface tension gradients, etc., and these usually coexist and interact with one another. The dominant convection mode is also different for different growth configurations and operation conditions. Due to the complexity of the hydrodynamics, the control of melt convection is nontrivial and requires a better understanding of the melt flow structures. Finding a proper growth condition for optimum melt flow is difficult and the operation window is often narrow. Therefore, to control the convection effectively, external forces, such as magnetic fields and accelerated rotation, are used in practice. In this chapter, we will first discuss the convections and their effects on the interface morphology and segregation for some melt growth configurations. The control of the flows by external forces will also be discussed through some experimental and simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

ACRT:

accelerated crucible rotation technique

AVT:

angular vibration technique

CZ:

Czochralski

EMCZ:

electromagnetic Czochralski

FZ:

floating zone

HB:

horizontal Bridgman

HZM:

horizontal ZM

LES:

large-eddy simulation

SCN:

succinonitrile

VB:

valence band

VB:

vertical Bridgman

ZM:

zone-melting

References

  1. K. Kakimoto, M. Watanabe, M. Eguchi, T. Hibiya: Ordered structure in non-axisymmetric flow of silicon melt convection, J. Cryst. Growth 126, 435–440 (1993)

    Article  ADS  Google Scholar 

  2. K. Kakimoto, H. Ozoe: Oxygen distribution at a solid–liquid interface of silicon under transverse magnetic fields, J. Cryst. Growth 212, 429–437 (2000)

    Article  ADS  Google Scholar 

  3. I.Y. Evstratov, V.V. Kalaev, A.I. Zhmakin, Y.N. Makarov, A.G. Abramov, N.G. Ivanov, A.B. Korsakov, E.M. Smirnov, E. Dornberger, J. Virbulis, E. Tomzig, W. von Ammon: Numerical study of 3D unsteady melt convection during industrial-scale CZ Si-crystal growth, J. Cryst. Growth 237-239, 1757–1761 (2002)

    Article  ADS  Google Scholar 

  4. E. Tomzig, J. Virbulis, W. von Ammon, Y. Gelfgat, L. Gorbunov: Application of dynamic and combined magnetic fields in the 300mm silicon single-crystal growth, Mater. Sci. Semicond. Process. 5, 347–351 (2003)

    Article  Google Scholar 

  5. D.T.J. Hurle: Crystal Pulling from the Melt (Springer, Berlin Heidelberg 1993)

    Book  Google Scholar 

  6. A.D.W. Jones: An experimental model of the flow in Czochralski growth, J. Cryst. Growth 61, 235–244 (1983)

    Article  ADS  Google Scholar 

  7. D.P. Lukanin, V.V. Kalaev, Y.N. Makarov, T. Wetzel, J. Virbulis, W. von Ammon: Advances in the simulation of heat transfer and prediction of the melt-crystal interface shape in silicon CZ growth, J. Cryst. Growth 266, 20–27 (2004)

    Article  ADS  Google Scholar 

  8. R.A. Brown: Theory of transport processes in single crystal growth from the melt, AIChE J. 34, 881–911 (1989)

    Article  Google Scholar 

  9. F. Dupret, N. van den Bogaert: Modeling Bridgman and Czochralski growth. In: Handbook of Crystal Growth: Growth Mechanisms and Dynamics, Vol. 2b, ed. by D.T.J. Hurle (North-Holland, Amsterdam 1994)

    Google Scholar 

  10. G. Müller, A.G. Ostrogorsky: Convection in melt growth. In: Handbook of Crystal Growth Growth Mechanisms and Dynamics, Vol. 2b, ed. by D.T.J. Hurle (North-Holland, Amsterdam 1994)

    Google Scholar 

  11. Y.F. Zou, G.-X. Wang, H. Zhang, V. Prasad: Mechanisms of thermo-solutal transport and segregation in high-pressure liquid-encapsulated Czochralski crystal growth, J. Heat Transf. 121, 148–159 (1999)

    Article  Google Scholar 

  12. C.W. Lan: Recent progress of crystal growth modeling and growth control, Chem. Eng. Sci. 59, 1437–1457 (2004)

    Article  Google Scholar 

  13. M.C. Liang, C.W. Lan: Three-dimensional thermocapillary and buoyancy convections and interface shape in horizontal Bridgman crystal growth, J. Cryst. Growth 180, 587–596 (1997)

    Article  ADS  Google Scholar 

  14. C.W. Lan, M.C. Su, M.C. Liang: A visualization and computational study of horizontal Bridgman crystal growth, J. Cryst. Growth 208, 717–725 (1999)

    Article  ADS  Google Scholar 

  15. C.W. Lan, J.H. Chian, T.Y. Wang: Interface control mechanisms in horizontal zone-melting with slow rotation, J. Cryst. Growth 218, 115–124 (2000)

    Article  ADS  Google Scholar 

  16. C.W. Lan: Heat Transfer, Fluid Flow, and Interface Shapes in Floating-Zone Crystal Growth. Ph.D. Thesis (University of Wisconsin, Madison 1991)

    Google Scholar 

  17. M. Levenstam, G. Amberg: Hydrodynamical instabilities of thermocapillary flow in a half-zone, J. Fluid Mech. 297, 357–372 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. P. Dold, A. Cröll, K.W. Benz: Floating-zone growth of silicon in magnetic fields. I. Weak static axial fields, J. Cryst. Growth 183, 545–553 (1998)

    Article  ADS  Google Scholar 

  19. S. Nakamura, T. Hibiya, K. Kakimoto, N. Imaishi, S. Nishizawa, A. Hirata, K. Mukai, S. Yoda, T.S. Morita: Temperature fluctuations of the Marangoni flow in a liquid bridge of molten silicon under microgravity on board the TR-IA-4 rocket, J. Cryst. Growth 186, 85–94 (1998)

    Article  ADS  Google Scholar 

  20. M. Prange, M. Wanschura, H.C. Kuhlmann, H.J. Rath: Linear stability of thermocapillary convection in cylindrical liquid bridges under axial magnetic fields, J. Fluid Mech. 394, 281–302 (1999)

    Article  ADS  MATH  Google Scholar 

  21. M. Schweizer, A. Croll, P. Dold, T. Kaiser, M. Lichtensteiger, K.W. Benz: Measurement of temperature fluctuations and microscopic growth rates in a silicon floating zone under microgravity, J. Cryst. Growth 203, 500–510 (1999)

    Article  ADS  Google Scholar 

  22. A. Mühlbauer, A. Muiznieks, J. Virbulis, A. Lüdge, H. Riemann: Interface shape, heat transfer and fluid flow in the floating zone growth of large silicon crystals with the needle-eye technique, J. Cryst. Growth 151, 66–79 (1995)

    Article  ADS  Google Scholar 

  23. G. Ratnieks, A. Muiznieks, A. Mühlbauer: Modelling of phase boundaries for large industrial FZ silicon crystal growth with the needle-eye technique, J. Cryst. Growth 255, 227–240 (2003)

    Article  ADS  Google Scholar 

  24. H.F. Utech, M.C. Flemming: Elimination of solute banding in indium antimonide crystals by growth in a magnetic Field, J. Appl. Phys. 37, 2021–2023 (1966)

    Article  ADS  Google Scholar 

  25. K.M. Kim, P. Smetana: Oxygen segregation in CZ silicon crystal-growth on applying a high axial magnetic-field, J. Electrochem. Soc. 133, 1682–1686 (1986)

    Article  Google Scholar 

  26. K.M. Kim: Suppression of thermal convection by transverse magnetic field, J. Electrochem. Soc. 129, 427–429 (1982)

    Article  Google Scholar 

  27. D.T.J. Hurle, R.W. Series: Use of a magnetic field in melt growth. In: Handbook of Crystal Growth, Vol. 2a, ed. by D.T.J. Hurle (North-Holland, Amsterdam 1994)

    Google Scholar 

  28. F.M. Herrmann, G. Müller: Growth of 20 mm diameter GaAs crystals by the floating-zone technique with controlled As-vapour pressure under microgravity, J. Cryst. Growth 156, 350–360 (1995)

    Article  ADS  Google Scholar 

  29. P. Dold, K.W. Benz: Rotating magnetic fields: fluid flow and crystal growth applications, Prog. Cryst. Growth Charact. Mater. 38, 7–38 (1999)

    Article  Google Scholar 

  30. M. Watanabe, M. Eguchi, T. Hibiya: Silicon crystal growth by the electromagnetic Czochralski (EMCZ) method, Jpn. J. Appl. Phys. 38, L10–L13 (1999)

    Article  ADS  Google Scholar 

  31. M. Watanabe, K.W. Yi, T. Hibiya, K. Kakimoto: Direct observation and numerical simulation of molten silicon flow during crystal growth under magnetic fields by x-ray radiography and large-scale computation, Progr. Crystal Growth Charact. Mater. 38, 215–238 (1999)

    Article  Google Scholar 

  32. M. Watanabe, M. Eguchi, W. Wang, T. Hibiya, S. Kuragaki: Controlling oxygen concentration and distribution in 200 mm diameter Si crystals using the electromagnetic Czochralski (EMCZ) method, J. Cryst. Growth 237-239, 1657–1662 (2002)

    Article  ADS  Google Scholar 

  33. A. Mitric, T. Duffar, C. Diaz-Guerra, V. Corregidor, L.C. Alves, C. Garnier, G. Vian: Growth of Ga1-xInxSb alloys by vertical Bridgman technique under alternating magnetic field, J. Cryst. Growth 287, 224–229 (2006)

    Article  ADS  Google Scholar 

  34. H.J. Scheel: Accelerated crucible rotation: a novel stirring technique in high-temperature solution growth, J. Cryst. Growth 13/14, 560–565 (1971)

    Article  ADS  Google Scholar 

  35. P. Capper, J.J. Gosney: Method of growing crystalline cadmium mercury telluride grown by method, UK Patent 2098879 (1982)

    Google Scholar 

  36. P. Capper, J.J.G. Gosney, C.L. Jones: Application of the accelerated crucible rotation technique to the Bridgman growth of CdxHg1-xTe: simulations and crystal growth, J. Cryst. Growth 70, 356–364 (1984)

    Article  ADS  Google Scholar 

  37. P. Capper, J.C. Brice, C.L. Jones, W.G. Coates, J.J.G. Gosney, C.K. Ard., I. Kenworthy: Interfaces and flow regimes in ACRT grown CdxHg1-xTe crystals, J. Cryst. Growth 89, 171–176 (1988)

    Article  ADS  Google Scholar 

  38. W.G. Coates, P. Capper, C.L. Jones, J.J.G. Gosney, C.K. Ard, I. Kenworthy, A. Clark: Effect of ACRT rotation parameters on Bridgman grown CdxHg1-xTe crystals, J. Cryst. Growth 94, 959–966 (1989)

    Article  ADS  Google Scholar 

  39. A.V. Anilkumar, R.N. Grugel, R.N. Shen, T.G. Wang: Control of thermocapillary convection in a liquid bridge by vibration, J. Appl. Phys. 73, 4165–4170 (1993)

    Article  ADS  Google Scholar 

  40. D.V. Lyubimov, T.P. Lyubimova, S. Meradji, B. Roux: Vibrational control of crystal growth from liquid phase, J. Cryst. Growth 180, 648–659 (1997)

    Article  ADS  Google Scholar 

  41. W.S. Liu, M.F. Wolf, D. Elwell, R.S. Feigelson: Low frequency vibrational stirring: a new method for radial mixing solutions and melts during growth, J. Cryst. Growth 82, 589–597 (1987)

    Article  ADS  Google Scholar 

  42. W. Yuan, M. Banan, L.L. Regel, W.R. Wilcox: The effect of vertical vibration of the ampoule on the direction solidification of InSb-GaSb alloy, J. Cryst. Growth 151, 235–242 (1995)

    Article  ADS  Google Scholar 

  43. V. Uspenski, J.J. Favier: High frequency vibration and natural convection in Bridgman-scheme crystal growth, Int. J. Heat Mass Transf. 37, 691–698 (1994)

    Article  MATH  Google Scholar 

  44. C.W. Lan: Effect of axisymmetric magnetic fields on heat flow and interface in floating-zone silicon crystal growth, Model. Simul. Mater. Sci. Eng. 6, 423–445 (1998)

    Article  ADS  Google Scholar 

  45. W.C. Yu, Z.B. Chen, W.T. Hsu, B. Roux, T.P. Lyubimova, C.W. Lan: Reversing radial segregation and suppressing morphological instability during Bridgman crystal growth by angular vibration, J. Cryst. Growth 271, 474–480 (2004)

    Article  ADS  Google Scholar 

  46. W.C. Yu, Z.B. Chen, W.T. Hsu: Effects of angular vibration on the flow, segregation, and interface morphology in vertical Bridgman crystal growth, Int. J. Heat Mass Transf. 50, 58–66 (2007)

    Article  MATH  Google Scholar 

  47. Y.C. Liu, W.C. Yu, B. Roux, T.P. Lyubimova, C.W. Lan: Thermal-solutal flows and segregation and their control by angular vibration in vertical Bridgman crystal growth, Chem. Eng. Sci. 61, 7766–7773 (2006)

    Article  Google Scholar 

  48. W.A. Arnold, W.R. Wilcox, F. Carlson, A. Chait, L.L. Regel: Transport modes during crystal growth in a centrifuge, J. Cryst. Growth 119, 24–40 (1992)

    Article  ADS  Google Scholar 

  49. G. Müller, G. Neumann, W. Weber: The growth of homogeneous semiconductor crystals in a centrifuge by the stabilizing influence of the Coriolis force, J. Cryst. Growth 119, 8–23 (1992)

    Article  ADS  Google Scholar 

  50. W.R. Wilcox, L.L. Regel: Influence of centrifugation on transport phenomena, 46th Int. Astronaut. Congr. (Oslo 1995)

    Google Scholar 

  51. J. Friedrich, J. Baumgartl, H.J. Leister, G. Müller: Experimental and theoretical analysis of convection and segregation in vertical Bridgman growth under high gravity on a centrifuge, J. Cryst. Growth 167, 45–55 (1996)

    Article  ADS  Google Scholar 

  52. W.R. Wilcox, L.L. Regel, W.A. Arnold: Convection and segregation during vertical Bridgman growth with centrifugation, J. Cryst. Growth 187, 543–558 (1998)

    Article  ADS  Google Scholar 

  53. C.W. Lan: Effects of ampoule rotation on flows and segregation in vertical Bridgman crystal growth, J. Cryst. Growth 197, 983–991 (1999)

    Article  ADS  Google Scholar 

  54. A. Yeckel, F.P. Doty, J.J. Derby: Effect of steady ampoule rotation on segregation in high-pressure vertical Bridgman growth of cadmium zinc telluride, J. Cryst. Growth 203, 87–102 (1999)

    Article  ADS  Google Scholar 

  55. C.W. Lan: Effects of centrifugal acceleration on flows and segregation in vertical Bridgman crystal growth, J. Cryst. Growth 229, 595–600 (2001)

    Article  ADS  Google Scholar 

  56. C.W. Lan, C.H. Chian: Three-dimensional simulation of Marangoni convection in floating-zone crystal growth, J. Cryst. Growth 230, 172–180 (2001)

    Article  ADS  Google Scholar 

  57. C.W. Lan, Y.W. Yang, C.Y. Tu: Reversing radial segregation and suppression morphological instability in directional solidification by rotation, J. Cryst. Growth 235, 619–625 (2002)

    Article  ADS  Google Scholar 

  58. C.W. Lan, Y.W. Yang, H.Z. Chen, I.F. Lee: Segregation and morphological instability due to double diffusive convection in rotational directional solidification, Metal. Mater. Trans. A 33, 3011–3017 (2002)

    Article  Google Scholar 

  59. A.F. Witt, H.C. Gatos, M. Lichtensteiger, M.C. Lavine, C.J. Herman: Crystal growth and steady state segregation under zero gravity, J. Electrochem. Soc. 122, 276–283 (1975)

    Article  ADS  Google Scholar 

  60. C.W. Lan, B.C. Yeh: Three-dimensional analysis of flow and segregation in vertical Bridgman crystal growth under a transversal magnetic field with ampoule rotation, J. Cryst. Growth 266, 200–206 (2004)

    Article  ADS  Google Scholar 

  61. M.C. Lan, M.C. Liang: A three-dimensional finite-volume/Newton method for thermal-capillary problems, Int. J. Numer. Methods Eng. 40, 621–636 (1997)

    Article  MATH  Google Scholar 

  62. C.W. Lan, M.C. Liang: Multigrid methods for incompressible heat flow problems with an unknown interface, J. Comput. Phys. 152, 55–77 (1999)

    Article  ADS  MATH  Google Scholar 

  63. A. Lipchin, R.A. Brown: Hybrid finite-volume/finite-element simulation of heat transfer and melt turbulence in Czochralski crystal growth of silicon, J. Cryst. Growth 216, 192–203 (2000)

    Article  ADS  Google Scholar 

  64. C.W. Lan, D.T. Yang: A numerical study on heat flow and interface of the vertical zone-melting crystal growth, Numer. Heat Transf., Part A 129, 131–145 (1996)

    Article  ADS  Google Scholar 

  65. C.W. Lan: Newtonʼs method for solving heat transfer, fluid flow and interface shapes in a floating molten zone, Int. J. Numer. Method Fluids 19, 41–65 (1994)

    Article  ADS  MATH  Google Scholar 

  66. C.W. Lan, S. Kou: Heat-transfer, fluid-flow and interface shapes in floating-zone crystal-growth, J. Cryst. Growth 108, 351–366 (1991)

    Article  ADS  Google Scholar 

  67. S. Kou, C.W. Lan: Contactless heater floating zone refining and crystal growth, US Patent 5217565 (1993)

    Google Scholar 

  68. C.W. Lan: Heat transfer, fluid flow, and interface shapes in zone melting processing with induction heating, J. Electrochem. Soc. 145, 3926–3935 (1998)

    Article  Google Scholar 

  69. C.W. Lan, M.C. Liang: Three-dimensional simulation of vertical zone-melting crystal growth: Symmetry breaking to multiple states, J. Cryst. Growth 208, 327–340 (2000)

    Article  ADS  Google Scholar 

  70. C.W. Lan, C.H. Wang: Three-dimensional bifurcations of a two-phase Rayleigh–Benard problem in a cylinder, Int. J. Heat Mass Transf. 44, 1823–1838 (2001)

    Article  MATH  Google Scholar 

  71. J. Baumgartl, W. Budweiser, G. Müller, G. Neumann: Studies of buoyancy driven convection in a vertical cylinder with parabolic temperature profile, J. Cryst. Growth 97, 9–17 (1989)

    Article  ADS  Google Scholar 

  72. W.G. Pfann: Zone Melting (Wiley, New York 1958)

    Google Scholar 

  73. C.W. Lan: Effects of axial vibration on vertical zone-melting processing, Int. J. Heat Mass Transf. 43, 1987–1997 (2000)

    Article  MATH  Google Scholar 

  74. W.W. Mullins, R.F. Sekerka: The stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys. 35, 444–451 (1964)

    Article  ADS  Google Scholar 

  75. K.H. Lie, J.T. Hsu, Y.D. Guo, T.P. Chen: Influence of through-window radiation on the horizontal Bridgman process for rectangular shaped GaAs crystals, J. Cryst. Growth 109, 205–211 (1991)

    Article  ADS  Google Scholar 

  76. P.M. Adornato, R.A. Brown: Convection and segregation in directional solidification of dilute and non-dilute binary alloy: effects of ampoule and furnace design, J. Cryst. Growth 80, 155–190 (1987)

    Article  ADS  Google Scholar 

  77. D. Hofmann, T. Jung, G. Müller: Growth of 2 inch Ge:Ga crystals by the dynamic verical gradient freeze process and its numerical modeling including transient segregation, J. Cryst. Growth 128, 213–218 (1992)

    Article  ADS  Google Scholar 

  78. C.W. Lan, F.C. Chen: A finite-volume method for solute segregation in directional solidification and comparison with a finite-element method, Comput. Methods Appl. Mech. Eng. 31, 191–207 (1996)

    Article  ADS  MATH  Google Scholar 

  79. M.C. Liang, C.W. Lan: Three-dimensional convection and solute segregation in vertical Bridgman crystal growth, J. Cryst. Growth 167, 320–332 (1996)

    Article  ADS  Google Scholar 

  80. G.D. Robertson, D.J. OʼConnor: Magnetic field effects on float-zone Si crystal growth: strong axial fields, J. Cryst. Growth 76, 111–122 (1986)

    Article  ADS  Google Scholar 

  81. C.W. Lan: Effect of axisymmetric magnetic fields on radial dopant segregation of floating-zone silicon growth in a mirror furnace, J. Cryst. Growth 169, 269–278 (1996)

    Article  ADS  Google Scholar 

  82. J.A. Burton, R.C. Prim, W.P. Slichter: The distribution of solute in crystals grown from the melt. Part I. Theoretical, J. Chem. Phys. 21, 1987–1991 (1953)

    Article  ADS  Google Scholar 

  83. D.H. Kim, P.M. Adornato, R.A. Brown: Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth, J. Cryst. Growth 89, 339–356 (1988)

    Article  ADS  Google Scholar 

  84. L.L. Rodot, M. Rodot, W.R. Wilcox: Material processing in high gravity-proceedings of the 1st international workshop on material processing in high gravity, J. Cryst. Growth 119, R8 (1992)

    Article  Google Scholar 

  85. C.W. Lan, C.Y. Tu: Three-dimensional analysis of heat flow, segregation, and interface shape of gradient-freeze growth in a centrifuge, J. Cryst. Growth 226, 406–418 (2001)

    Article  ADS  Google Scholar 

  86. M.R. Foster: The effect of rotation on vertical Bridgman growth at large Rayleigh number, J. Fluid Mech. 409, 185–221 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. A. Yeckel, J.J. Derby: Effect of accelerated crucible rotation on melt composition in high-pressure vertical Bridgman growth of cadmium zinc telluride, J. Cryst. Growth 209, 734–750 (2000)

    Article  ADS  Google Scholar 

  88. S.H. Lee, Y.J. Kim, S.H. Cho, E.P. Yoon: The influence of the Czochralski growth parameters on the growth of lithium niobate single crystals, J. Cryst. Growth 125, 175–180 (1992)

    Article  ADS  Google Scholar 

  89. Q. Xiao, J.J. Derby: Three-dimensional melt flows in Czochralski oxide growth: High-resolution, massively parallel, finite element computations, J. Cryst. Growth 152, 169–181 (1995)

    Article  ADS  Google Scholar 

  90. M.P. Gates, B. Cockayne: Purification of sodium tungstate, Nature 207, 855 (1965)

    Article  ADS  Google Scholar 

  91. C.D. Brandle: Flow transitions in Czochralski oxide melts, J. Cryst. Growth 57, 65–70 (1982)

    Article  ADS  Google Scholar 

  92. C.J. Jing, N. Imaishi, T. Sato, Y. Miyazawa: Three-dimensional numerical simulation of oxide melt flow in Czochralski configuration, J. Cryst. Growth 216, 372–388 (2000)

    Article  ADS  Google Scholar 

  93. M. Watanabe, M. Eguchi, K. Kakimoto: The baroclnic flow instability in rotating silicon melt, J. Cryst. Growth 128, 288–292 (1993)

    Article  ADS  Google Scholar 

  94. P. Dold, K.W. Benz: Modification of fluid flow and heat transport in vertical Bridgman configurations by rotating magnetic fields, Cryst. Res. Technol. 32, 51–60 (1997)

    Article  Google Scholar 

  95. M. Watanabe, D. Vizman, J. Friedrich: Large modification of crystal-melt interface shape during Si crystal growth by using electromagnetic Czochralski method (EMCZ), J. Cryst. Growth 292, 252–256 (2006)

    Article  ADS  Google Scholar 

  96. G. Müller, J. Friedrich: Challenges in modeling of bulk crystal growth, J. Cryst. Growth 266, 1–19 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Wen Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Lan, CW. (2010). Convection and Control in Melt Growth of Bulk Crystals. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_36

Download citation

Publish with us

Policies and ethics