Skip to main content

Growth and Characterization of Silicon Carbide Crystals

  • Chapter
Book cover Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

Abstract

Silicon carbide is a semiconductor that is highly suitable for various high-temperature and high-power electronic technologies due to its large energy bandgap, thermal conductivity, and breakdown voltage, among other outstanding properties. Large-area high-quality single-crystal wafers are the chief requirement to realize the potential of silicon carbide for these applications. Over the past 20 years, considerable advances have been made in silicon carbide single-crystal growth technology through understanding of growth mechanisms and defect nucleation. Wafer sizes have been greatly improved from wafer diameters of a few millimeters to 100 mm, with overall dislocation densities steadily reducing over the years. Device-killing micropipe defects have almost been eliminated, and the reduction in defect densities has facilitated enhanced understanding of various defect configurations in bulk and homoepitaxial layers. Silicon carbide electronics is expected to continue to grow and steadily replace silicon, particularly for applications under extreme conditions, as higher-quality, lower-priced large wafers become readily available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

AB:

Abrahams and Burocchi

AFM:

atomic force microscopy

BPD:

basal-plane dislocation

CD:

convection diffusion

CVD:

chemical vapor deposition

HLA:

half-loop array

IMPATT:

impact ionization avalanche transit-time

LAGB:

low-angle grain boundary

LED:

light-emitting diode

LPE:

liquid-phase epitaxy

MESFET:

metal-semiconductor field effect transistor

MOSFET:

metal–oxide–semiconductor field-effect transistor

PVT:

physical vapor transport

REDG:

recombination enhanced dislocation glide

SD:

screw dislocation

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

SF:

stacking fault

SSM:

sublimation sandwich method

SWBXT:

synchrotron white beam x-ray topography

TED:

threading edge dislocation

TEM:

transmission electron microscopy

TRAPATT:

trapped plasma avalanche-triggered transit

TSD:

threading screw dislocation

TV:

television

XRT:

x-ray topography

References

  1. A.A. Lebedev, V.E. Chelnokov: Wide-gap semiconductors for high-power electronics, Semiconductors 33, 999–1001 (1999)

    Article  ADS  Google Scholar 

  2. V.E. Chelnokov, A.L. Syrkin: High temperature electroics using SiC: Actual situation and unsolved problems, Mater. Sci. Eng. B 46, 248–253 (1997)

    Article  Google Scholar 

  3. A. Lloyd, P. Tobias, A. Baranzahi, P. Martensson, I. Lundström: Current status of silicon carbide based high-temperature gas sensors, IEEE Trans. Electron. Dev. 46, 561–566 (1999)

    Article  ADS  Google Scholar 

  4. C.I. Harris, A.O. Konstantinov: Recent developments in SiC device research, Phys. Scr. 79, 27–31 (1999)

    Article  Google Scholar 

  5. V. Harle, N. Hiller, S. Kugler, B. Hahn, N. Stath: Industrial aspects of GaN/SiC blue light emitting diodes in Europe, Mater. Sci. Eng. B 61–62, 310–313 (1999)

    Article  Google Scholar 

  6. A.G. Acheson: Br. Pat. 17, 911 (1892)

    Google Scholar 

  7. A.J. Lely: Darstellung von Einkristallen von Siliziumcarbid und Beherrschung von Art und Menge der eingebauten Verunreinigungen, Ber. Dtsch. Keram. Ges. 32, 229–231 (1955)

    Google Scholar 

  8. D.R. Hamilton: The growth of silicon carbide by sublimation. In: Silicon Carbide. A High Temperature Semiconductor, ed. by J.R. Connor, J. Smilestens (Pergamon, Oxford 1960) pp. 45–51

    Google Scholar 

  9. V.P. Novikov, V.I. Ionov: Production of monocrystals of alpha silicon carbide, Growth Cryst. 6, 9–21 (1968)

    Google Scholar 

  10. F.A. Halden: The growth of silicon carbide from solution. In: Silicon Carbide. A High Temperature Semiconductor, ed. by J.R. Connor, J. Smilestens (Pergamon, Oxford 1960) pp. 115–123

    Google Scholar 

  11. J.T. Kendal: The growth of silicon carbide from gaseous cracking. In: Silicon Carbide. A High Temperature Semiconductor, ed. by J.R. Connor, J. Smilestens (Pergamon, Oxford 1960) pp. 67–72

    Google Scholar 

  12. Y.M. Tairov, V.F. Tsvetkov: Investigation of growth processes of ingots of silicon carbide single crystals, J. Cryst. Growth 43, 209–212 (1978)

    Article  ADS  Google Scholar 

  13. Cree Research, Inc., 2810 Meridian Parkway, Durham, NC 27713, USA

    Google Scholar 

  14. H. Matsunami, T. Kimoto: Step controlled epitaxial growth of SiC: High quality homoepitaxy, Mater. Sci. Eng. R 20, 125–166 (1997)

    Article  Google Scholar 

  15. R.C. Glass, D. Henshall, V.F. Tsvetkov, C.H. Carter Jr.: SiC-seeded crystal growth, MRS Bulletin 22, 30–35 (1997)

    Article  Google Scholar 

  16. W.F. Knippenberg: Growth phenomena in silicon carbide: Preparative procedures, Philips Res. Rep. 18, 170–179 (1966)

    Google Scholar 

  17. G. Ziegler, P. Lanig, D. Theis, C. Weyrich: Single crystal growth of SiC substrate material for blue light emitting diodes, IEEE Trans. Electron. Dev. 30, 277–281 (1983)

    Article  ADS  Google Scholar 

  18. D.L. Barrett, R.G. Seidensticker, W. Gaida, R.H. Hopkins: SiC boule growth by sublimation vapor transport, J. Cryst. Growth 109, 17–23 (1991)

    Article  ADS  Google Scholar 

  19. R.A. Stein, P. Lanig, S. Leibenzeder: Influence of surface energy on the growth of 6H and 4H-SiC polytypes sublimation, Mater. Sci. Eng. B 11, 69–71 (1992)

    Article  Google Scholar 

  20. R.C. Glass, D. Henshall, V.F. Tsvetkov, C.H. Carter Jr.: SiC seeded crystal growth, Phys. Status Solidi (b) 202, 149–162 (1997)

    Article  ADS  Google Scholar 

  21. D.L. Barrett, J.P. Mchugh, H.M. Hobgood, R.H. Hopkins, P.G. McMullin, R.C. Clarke: Growth of large SiC single crystals, J. Cryst. Growth 128, 358–362 (1993)

    Article  ADS  Google Scholar 

  22. A.R. Powell, S. Wang, G. Fechko, G.R. Brandes: Sublimation growth of 50 mm diameter SiC wafers, Mater. Sci. Forum 264–268, 13–16 (1998)

    Article  Google Scholar 

  23. I. Garcon, A. Rouault, M. Anikin, C. Jaussaud, R. Madar: Study of SiC single-crystal sublimation growth conditions, Mater. Sci. Eng. B 29, 90–93 (1995)

    Article  Google Scholar 

  24. Y.M. Tairov, Y.V.F. Tsvetkov: General principles of growing large-size single crystals of various silicon carbide polytypes, J. Cryst. Growth 52, 146–150 (1981)

    Article  ADS  Google Scholar 

  25. Y.M. Tairov: Growth of bulk SiC, Mater. Sci. Eng. B 29, 83–89 (1995)

    Article  Google Scholar 

  26. S.Y. Karpov, Y.N. Makarov, E.N. Mokhov, M.G. Ramm, M.S. Ramm, A.D. Roenkov, R.A. Talalaev, Y.A. Vodakov: Analysis of silicon carbide growth by sublimation sandwich method, J. Cryst. Growth 173, 408–416 (1997)

    Article  ADS  Google Scholar 

  27. S.Y. Karpov, Y.N. Makarov, M.S. Ramm: Simulation of sublimation growth of SiC single crystals, Phys. Status Solidi (b) 202, 201–220 (1997)

    Article  ADS  Google Scholar 

  28. Y.A. Vodakov, A.D. Roenkov, M.G. Ramm, E.N. Mokhov, Y.N. Makarov: Use of Ta-container for sublimation growth and doping of SiC bulk crystals and epitaxial layers, Phys. Status Solidi (b) 202, 177–200 (1997)

    Article  ADS  Google Scholar 

  29. E.N. Mokhov, M.G. Ramm, A.D. Roenkov, Y.A. Vodakov: Growth of silicon carbide bulk crystals by the sublimation sandwich method, Mater. Sci. Eng. B 46, 317–323 (1997)

    Article  Google Scholar 

  30. S.Y. Karpov, Y.N. Makarov, M.S. Ramm, R.A. Talalaev: Control of SiC growth and graphitization in sublimation sandwich system, Mater. Sci. Eng. B 46, 340–344 (1997)

    Article  Google Scholar 

  31. A. Henry, I.G. Ivanov, T. Egilsson, C. Hallin, A. Ellison, O. Kordina, U. Lindefelt, E. Janzen: High quality 4H-SiC grown on various substrate orientations, Diam. Relat. Mater. 6, 1289–1292 (1997)

    Article  ADS  Google Scholar 

  32. D.J. Larkin: An overview of SiC epitaxial growth, MRS Bulletin 22, 36–41 (1997)

    Google Scholar 

  33. H. Matsunami: Progress in epitaxial growth of SiC, Physica B 185, 65–74 (1993)

    Article  ADS  Google Scholar 

  34. S. Nishinov, J.A. Powell, H.A. Will: Production of large-are single-crystal wafers of cubic SiC for semiconductors, Appl. Phys. Lett. 42, 460–462 (1983)

    Article  ADS  Google Scholar 

  35. R. Yakimova, R.E. Janzen: Current status and advances in the growth of SiC, Diam. Relat. Mater. 9, 432–438 (2000)

    Article  ADS  Google Scholar 

  36. O. Kordina, C. Hallin, A. Ellison, A.S. Bakin, I.G. Ivanov, A. Henry, R. Yakimova, M. Touminen, A. Vehanen, E. Janzen: High temperature chemical vapor deposition of SiC, Appl. Phys. Lett. 69, 14561458 (1996)

    Google Scholar 

  37. O. Kordina, C. Hallin, A. Henry, J.P. Bergman, I. Ivanov, A. Ellison, N.T. Son, E. Janzen: Growth of SiC by ``hot-wallʼʼ CVD and HTCVD, Phys. Status Solidi (b) 202, 321–334 (1997)

    Article  ADS  Google Scholar 

  38. C.H. Carter, V.F. Tsvetkov, R.C. Glass, D. Henshall, M. Brady, S.G. Muller, O. Kordina, K. Irvine, J.A. Edmond, H.S. Kong, R. Singh, S.T. Allen, J.A. Palmour: Progress in SiC: From material growth to commericial device development, Mater. Sci. Eng. B 61–62, 1–8 (1999)

    Article  Google Scholar 

  39. E. Janzen, O. Kordina: SiC Material for high-power applications, Mater. Sci. Eng. B 46, 203–209 (1997)

    Article  Google Scholar 

  40. M. Nakabayashi, T. Fujimoto, M. Katsuno, N. Ohtani, H. Tsuge, H. Yashiro, T. Aigo, T. Hoshino, H. Hirano, K. Tatsumi: Growth of crack-free 100 mm diameter 4H-SiC crystals with low micropipe densities, Mater. Sci. Forum 600–603, 3–6 (2009)

    Article  Google Scholar 

  41. R.T. Leonard, Y. Khlebnikov, A.R. Powell, C. Basceri, M.F. Brady, I. Khlebnikov, J.R. Jenny, D.P. Malta, M.J. Paisley, V.F. Tsvetkov, R. Zilli, E. Deyneka, H. Hobgood, V. Balakrishna, C.H. Carter Jr.: 100 mm 4HN-SiC wafers with zero micropipe density, Mater. Sci. Forum 600–603, 7–10 (2009)

    Article  Google Scholar 

  42. M. Syväjärvi, R. Yakimova, I.G. Ivanov, E. Janzen: Growth of 4H SiC from liquid phase, Mater. Sci. Eng. B 46, 329–332 (1997)

    Article  Google Scholar 

  43. B.M. Epelbaum, D. Hofmann, M. Muller, A. Winnacker: Top-seeded soloution growth of bulk SiC: Search for the fast growth regimes, Mater. Sci. Forum 338–342, 107–110 (2000)

    Article  Google Scholar 

  44. A. Suzuki, M. Ikeda, N.T. Nagoa, H. Matsunami, T.J. Tanaka: Liquid phase epitaxial growth of 6H-SiC by the dipping technique for preparation of blue-light-emitting diodes, J. Appl. Phys. 47, 4546–4550 (1976)

    Article  ADS  Google Scholar 

  45. Y.M. Tairov, F.I. Raihel, V.F. Tsvetkov: Silicon solubility in tin and gallium, Neorg. Mater. 3, 1390–1391 (1982)

    Google Scholar 

  46. V.A. Dmitriev, L.B. Elfimov, N.D. IIʼinskaya, S.V. Rendakova: Liquid phase epitaxy of silicon carbide at temperatures of 1100–1200 °C, Springer Proc. Phys. 56, 307–311 (1996)

    Article  Google Scholar 

  47. V.A. Dmitriev, A. Cherenov: Growth of SiC and SiC-AlN solid solution by container by container free liquid phase epitaxy, J. Cryst. Growth 128, 343–348 (1993)

    Article  ADS  Google Scholar 

  48. M. Syväjärvi, R. Yakimova, H.H. Radamsom, N.T. Son, Q. Wahab, I.G. Ivanov, E. Janzen: Liquid phase epitaxial growth of SiC, J. Cryst. Growth 197, 147–154 (1999)

    Article  ADS  Google Scholar 

  49. R. Yakimova, M. Syväjärvi, M. Tuominen, T. Iakimov, R. Råback, A. Vehanen, E. Janz: Seeded sublimation growth of 6H and 4H-SiC crystals, Mater. Sci. Eng. B 61–62, 54–57 (1999)

    Article  Google Scholar 

  50. G. Augustine, H.M. Hobgood, V. Balakrishna, G. Dunne, R.H. Hopkins: Physical vapor transport growth and properties of SiC monocrystals of 4H polytype, Phys. Status Solidi (b) 202, 137–148 (1997)

    Article  ADS  Google Scholar 

  51. S.I. Nishizawa, Y. Kitou, W. Bahng, N. Oyanagi, M.N. Khan, K. Arai: Shape of SiC bulk single crystal grown by sublimation, Mater. Sci. Forum 338–342, 99–102 (2000)

    Article  Google Scholar 

  52. D. Hobgood, M. Brady, W. Brixius, G. Fechko, R. Glass, D. Henshall, J.R. Jenny, R. Leonard, D. Malta, S.G. Muller, V. Tsvetkov, C.H. Carter Jr.: Status of large diameter SiC crystal growth for electronic and optical applications, Mater. Sci. Forum 338–342, 3–8 (2000)

    Article  Google Scholar 

  53. D.W. Snyder, V.D. Heydemann, W.J. Everson, D.L. Barret: Large diameter PVT growth of bulk 6H SiC crystals, Mater. Sci. Forum 338–342, 9–12 (2000)

    Article  Google Scholar 

  54. R.R. Siergiej, R.C. Clarke, S. Sriram, A.K. Aggarwal, R.J. Bojko, A.W. Morse, V. Balakrishana, M.F. MacMillan, A.A. Burk, C.D. Brandt: Advances in SiC materials and devices: An industrial point of view, Mater. Sci. Eng. B 61–62, 9–17 (1999)

    Article  Google Scholar 

  55. S.G. Muller, R.C. Glass, H.M. Hobgood, V.F. Tsvetkov, M. Brady, D. Henshall, J.R. Jenny, D. Malta, C.H. Carter Jr.: The status of SiC bulk growth from an industrial point of view, J. Cryst. Growth 211, 325–332 (2000)

    Article  ADS  Google Scholar 

  56. Q.-S. Chen, V. Prasad, H. Zhang, M. Dudley: Silicon carbide crystals – Part II: Process physics and modeling. In: Crystal Growth Technology, ed. by K. Byrappa, T. Ohachi (Springer, Berlin, Heidelberg 2001) pp. 233–269

    Google Scholar 

  57. G. Dhanaraj, X.R. Huang, M. Dudley, V. Prasad, R.-H. Ma: Silicon carbide crystals – Part II: Process physics and modeling. In: Crystal Growth Technology, ed. by K. Byrappa, T. Ohachi (Springer, Berlin, Heidelberg 2001) pp. 181–232

    Google Scholar 

  58. T. Nishiguchi, S. Okada, M. Sasaki, H. Harima, S. Nishino: Crystal growth of 15R-SiC boules by sublimation method, Mater. Sci. Forum 338–342, 115–118 (2000)

    Article  Google Scholar 

  59. E.K. Sanchez, T. Kuhr, D. Heydemann, W. Snyder, S. Rohrer, M. Skowronski: Formation of thermal decomposition cavities in physical vapor transport of silicon carbide, J. Electron. Mater. 29, 347–351 (2000)

    Article  ADS  Google Scholar 

  60. M. Tuominen, R. Yakimova, R.C. Glass, T. Tuomi, E. Janzen: Crystalline imperfections in 4H SiC grown with a seeded Lely method, J. Cryst. Growth 144, 267–276 (1994)

    Article  ADS  Google Scholar 

  61. M. Anikin, R. Madar: Temperature gradient controlled SiC crystal growth, Mater. Sci. Eng. B 46, 278–286 (1997)

    Article  Google Scholar 

  62. W. Bahng, Y. Kitou, S. Nishizawa, H. Yamaguchi, M. Nasir Khan, N. Oyanagi, S. Nishino, K. Arai: Rapid enlargement of SiC single crystal using a cone-shaped platform, J. Cryst. Growth 209, 767–772 (2000)

    Article  ADS  Google Scholar 

  63. R. Schorner, P. Friedrichs, D. Peters, D. Stephani: Significantly improved performance of MOSFETs on silicon carbide using the 15R-SiC, IEEE Electron. Device Lett. 20, 241–244 (1999)

    Article  ADS  Google Scholar 

  64. N. Schulze, D. Barrett, M. Weidner, G. Pensl: Controlled growth of bulk 15R SiC single crystals by the modified Lely method, Mater. Sci. Forum 338–342, 111–114 (2000)

    Article  Google Scholar 

  65. J. Takahashi, M. Kanaya, Y. Fujiwara: Sublimation growth of SiC single crystalline ingots on faces perpendicular to the (0001) basal-plane, J. Cryst. Growth 135, 61–70 (1994)

    Article  ADS  Google Scholar 

  66. M. Touminen, R. Yakimova, E. Prieur, A. Ellison, T. Toumi, A. Vehanen, E. Janzen: Growth-related structural defects in seeded sublimation-grown SiC, Diam. Relat. Mater. 6, 1272–1275 (1997)

    Article  ADS  Google Scholar 

  67. N. Oyanagi, S.I. Nishizawa, T. Kato, H. Yamaguchi, K. Arai: SiC Single crystal growth rate by in-situ observation using the transmission x-ray technique, Mater. Sci. Forum 338–342, 75–78 (2000)

    Article  Google Scholar 

  68. T. Kato, N. Oyangi, H. Yamaguchi, Y. Takano, S. Nishizawa, K. Arai: In-situ observation of SiC bulk single crystal growth by x-ray topography, Mater. Sci. Forum 338–342, 457–460 (2000)

    Article  Google Scholar 

  69. W. Si, M. Dudley, R. Glass, V. Tsvetkov, C.H. Carter Jr.: Experimental studies of hollow-core screw dislocations in 6H-SiC and 4H-SiC single crystals, Mater. Sci. Forum 264–268, 429–432 (1998)

    Article  Google Scholar 

  70. W. Si, M. Dudley, R. Glass, V. Tsvetkov, C.H. Carter Jr.: Hollow-core screw dislocations in 6H-SiC single crystals. A test of Frankʼs theory, J. Electron. Mater. 26, 128–133 (1997)

    Article  ADS  Google Scholar 

  71. M. Dudley, W. Si, S. Wang, C.H. Carter Jr., R. Glass, V.F. Tsvetkov: Quantitative analysis of screw dislocations in 6H-SiC single crystals, Nuovo Cim. D 19, 153–164 (1997)

    Article  ADS  Google Scholar 

  72. M. Dudley, S. Wang, W. Huang, C.H. Carter Jr., V.F. Tsvetkov, C. Fazi: White beam synchrotron topographic studies of defects in 6H-SiC single crystals, J. Phys. D 28, A63–A68 (1995)

    Article  ADS  Google Scholar 

  73. F.C. Frank: Capillary equillibria of dislocated crystals, Acta Cryst. 4, 497–501 (1951)

    Article  Google Scholar 

  74. A.R. Verma: Spiral growth on carborundum crystal faces, Nature 167, 939 (1951)

    Article  ADS  Google Scholar 

  75. S. Amelinck: Spiral growth on carborundum crystal faces, Nature 167, 939–940 (1951)

    Article  ADS  Google Scholar 

  76. A.R. Verma: Crystal Growth and Dislocations (Butterworths Scientific, London 1953)

    MATH  Google Scholar 

  77. J. Giocondi, G.S. Rohrer, M. Skowronski, V. Balakrishna, G. Augustine, H.M. Hobgood, R.H. Hopkins: An AFM study of super-dislocation/micropipe complexes on the 6H-SiC(0001) growth surfaces, J. Cryst. Growth 181, 351–362 (1997)

    Article  ADS  Google Scholar 

  78. M. Dudley, W. Huang, S. Wang, J.A. Powell, P. Neudeck, C. Fazi: White beam synchrotron topographic analysis of multipolytype SiC device configurations, J. Phys. D 28, A56–A62 (1995)

    Article  ADS  Google Scholar 

  79. X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, C.H. Carter Jr.: Contrast mechanism in superscrew dislocation images on synchrotron back-reflection topographs, Mater. Res. Soc. Symp. Proc. 524, 71–76 (1998)

    Article  Google Scholar 

  80. X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, S. Wang, C.H. Carter Jr.: Direct evidence of micropipe-related pure superscrew dislocations in SiC, Appl. Phys. Lett. 74, 353–356 (1999)

    Article  ADS  Google Scholar 

  81. X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, W. Si, C.H. Carter Jr.: Superscrew dislocation contrast on synchrotron white-beam topographs: An accurate description of the direct dislocation image, J. Appl. Crystallogr. 32, 516–524 (1999)

    Article  Google Scholar 

  82. M. Dudley, X.R. Huang, W. Huang: Assessment of orientation and extinction contrast contributions to the direct dislocation image, J. Phys. D 32, A139–A144 (1999)

    Article  ADS  Google Scholar 

  83. Y. Chen, M. Dudley: Direct determination of dislocation sense of closed-core threading screw dislocations using synchrotron white beam x-ray topography in 4H silicon carbide, Appl. Phys. Lett. 91, 141918 (2007)

    Article  ADS  Google Scholar 

  84. Y. Chen, G. Dhanaraj, M. Dudley, E.K. Sanchez, M.F. MacMillan: Sense determination of micropipes via grazing-incidence synchrotron white beam x-ray topography in 4H silicon carbide, Appl. Phys. Lett. 91, 071917 (2007)

    Article  ADS  Google Scholar 

  85. I. Kamata, M. Nagano, H. Tsuchida, Y. Chen, M. Dudley: Investigation of character and spatial distribution of threading edge dislocations in 4H-SiC epilayers by high-resolution topography, J. Cryst. Growth 311, 1416–1422 (2009)

    Article  ADS  Google Scholar 

  86. N. Schulze, D.L. Barret, G. Pensl: Near-equilibrium growth of micropipe free 6H-SiC single crystals by physical vapor transport, Appl. Phys. Lett. 72, 1632–1634 (1998)

    Article  ADS  Google Scholar 

  87. V. Tsvetkov, R. Glass, D. Henshall, D. Asbury, C.H. Carter Jr.: SiC seeded boule growth, Mater. Sci. Forum 264–268, 3–8 (1998)

    Article  Google Scholar 

  88. V.D. Heydemann, E.K. Sanchez, G.S. Rohrer, M. Skowronski: Structural evolution of Lely seeds during the initial stages of SiC sublimation growth, Mater. Res. Soc. Symp. Proc. 483, 295–300 (1998)

    Article  Google Scholar 

  89. V. Balakrishna, R.H. Hopkins, G. Augustine, G.T. Donne, R.N. Thomas: Characterization of 4H-SiC monocrystals grown by physical vapor transport, Inst. Phys. Conf. Ser. 160, 321–331 (1998)

    Google Scholar 

  90. S. Gits-Leon, F. Lefaucheux, M.C. Robert: Effect of stirring on crystalline quality of solution grown crystals – case of potash aluminum, J. Cryst. Growth 44, 345–355 (1978)

    Article  ADS  Google Scholar 

  91. H. Klapper, H. Kuppers: Directions of dislocation lines in crystals of ammonium hydrogen oxalate hemihydrate grown from solution, Acta Cryst. A 29, 495–503 (1973)

    Article  Google Scholar 

  92. G. Neuroth: Der Einfluß von Einschlußbildung und mechanischer Verletzung auf das Wachstum und die Perfektion von Kristallen. Ph.D. Thesis (University of Bonn, Bonn 1996)

    Google Scholar 

  93. A.A. Chernov: Formation of crystals in solutions, Contemp. Phys. 30, 251–276 (1989)

    Article  ADS  Google Scholar 

  94. M. Dudley, X.R. Huang, W. Huang, A. Powell, S. Wang, P. Neudeck, M. Skowronski: The mechanism of micropipe nucleation at inclusions in silicon carbide, Appl. Phys. Lett. 75, 784–786 (1999)

    Article  ADS  Google Scholar 

  95. P. Krishna, S.-S. Jiang, A.R. Lang: An optical and x-ray topographic study of giant screw dislocations in silicon-carbide, J. Cryst. Growth 71, 41–56 (1985)

    Article  ADS  Google Scholar 

  96. Y. Chen, M. Dudley, K.X. Liu, R.E. Stahlbush: Observations of the influence of threading dislocations on the recombination enhanced partial dislocation glide in 4H-silicon carbide epitaxial layers, Appl. Phys. Lett. 90, 171930 (2007)

    Article  ADS  Google Scholar 

  97. S. Wang: Characterization of growth defects in silicon carbide single crystals by synchrotron x-ray topography. Ph.D. Thesis (State University of New York at Stony Brook, Stony Brook 1995)

    Google Scholar 

  98. W.M. Vetter: Characterization of dislocation structures in silicon carbide crystals. Ph.D. Thesis (State University of New York at Stony Brook, Stony Brook 1999)

    Google Scholar 

  99. M.H. Hong, A.V. Samant, P. Pirouz: Stacking fault energy of 6H-SiC and 4H-SiC single crystals, Philos. Mag. A 80, 919–935 (2000)

    Article  ADS  Google Scholar 

  100. H. Lendenmann, F. Dahlquist, N. Johansson, R. Soderholm, P.A. Nilsson, J.P. Bergman, P. Skytt: Long term operation of 4.5 kV PiN and 2.5 kV JBS diodes, Mater. Sci. Forum 353–356, 727 (2001)

    Article  Google Scholar 

  101. A. Galeckas, J. Linnros, P. Pirouz: Recombination-enhanced extension of stacking faults in 4H-SiC p-i-n diodes under forward bias, Appl. Phys. Lett. 81, 883 (2002)

    Article  ADS  Google Scholar 

  102. J.D. Weeks, J.C. Tully, L.C. Kimerling: Theory of recombination-enhanced defect reactions in semiconductors, Phys. Rev. B 12, 3286–3292 (1975)

    Article  ADS  Google Scholar 

  103. H. Sumi: Dynamic defect reactions induced by multiphonon nonradiative recombination of injected carriers at deep levels in semiconductors, Phys. Rev. B 29, 4616–4630 (1984)

    Article  ADS  Google Scholar 

  104. N. Zhang, Y. Chen, Y. Zhang, M. Dudley, R.E. Stahlbush: Nucleation mechanism of dislocation half-loop arrays in 4H-silicon carbide homoepitaxial layers, Appl. Phys. Lett. 94, 122108 (2009)

    Article  ADS  Google Scholar 

  105. S. Ha, P. Mieszkowski, M. Skowronski, L.B. Rowland: Dislocation conversion in 4H silicon carbide epitaxy, J. Cryst. Growth 244, 257–266 (2002)

    Article  ADS  Google Scholar 

  106. Z. Zhang, T.S. Sudarshan: Basal plane dislocation-free epitaxy of silicon carbide, Appl. Phys. Lett. 87, 151913 (2005)

    Article  ADS  Google Scholar 

  107. J.J. Sumakeris, J.P. Bergman, M.K. Das, C. Hallin, B.A. Hull, E. Janzen, H. Lendenmann, M.J. OʼLoughlin, M.J. Paisley, S. Ha, M. Skowronski, J.W. Palmour, C.H. Carter Jr.: Techniques for minimizing the basal plane dislocation density in SiC epilayers to reduce Vf drift in SiC bipolar power devices, Mater. Sci. Forum 527–529, 141 (2006)

    Article  Google Scholar 

  108. E.R. Stahlbush, B.L. VanMil, R.L. Myers-Ward, K.-K. Lew, D.K. Gaskill, C.R. Eddy Jr.: Basal plane dislocation reduction in 4H-SiC epitaxy by growth interruptions, Appl. Phys. Lett. 94, 041916 (2009)

    Article  ADS  Google Scholar 

  109. R.E. Stahlbush, B.L. VanMil, K.X. Liu, K.K. Lew, R.L. Myers-Ward, D.K. Gaskill, C.R. Eddy Jr., X. Zhang, M. Skowronski: Evolution of basal plane dislocations during 4H-SiC epitaxial growth, Mater. Sci. Forum 600–603, 317–320 (2009)

    Article  Google Scholar 

  110. H. Tsuchida, I. Kamata, M. Nagano: Investigation of defect formation in 4H-SiC(0001) and (0001̄) epitaxy, Mater. Sci. Forum 600–603, 267–272 (2009)

    Article  Google Scholar 

  111. J.W. Matthews, A.E. Blakeslee: Defects in epitaxial multilayers: I. Misfit dislocations, J. Cryst. Growth 27, 118–125 (1974)

    ADS  Google Scholar 

  112. M. Dudley, N. Zhang, Y. Zhang, B. Raghothamachar, S. Byrappa, G. Choi, E.K. Sanchez, D. Hansen, R. Drachev, M.J. Loboda: Characterization of 100 mm diameter 4H-Silicon carbide crystals with extremely low basal plane dislocation density, Mater. Sci. Forum 645–648, 291 (2010)

    Article  Google Scholar 

  113. M. Selder, L. Kadinski, F. Durst, T.L. Straubinder, P.L. Wellmann, D. Hofmann: Numerical simulation of thermal stress formation during PVT-growth of SiC bulk crystals, Mater. Sci. Forum 353–356, 65 (2001)

    Article  Google Scholar 

  114. M. Dudley, S. Byrappa, H. Wang, F. Wu, Y. Zhang, B. Raghothamachar, G. Choi, E.K. Sanchez, D. Hansen, R. Drachev, M.J. Loboda: Analysis of dislocation behavior in low dislocation density, PVT-grown, four-inch silicon carbide single crystals, Mater. Res. Soc. Symp. Proc. 1246, (2010) in press

    Google Scholar 

  115. A. Authier, Y. Epelboin: Variation of stacking fault contrast with the value of the phase shift in x-ray topography, Phys. Status Solidi (a) 41, K9–K12 (1977)

    Article  ADS  Google Scholar 

  116. P. Pirouz, J.W. Yang: Polytypic transformations in SiC: The role of TEM, Ultramicroscopy 51, 189–214 (1993)

    Article  Google Scholar 

  117. Y. Chen, H. Chen, N. Zhang, M. Dudley, R. Ma: Investigation and properties of grain boundaries in silicon carbide, Mater. Res. Soc. Symp. Proc. E 955, 0955I0750 (2007)

    Google Scholar 

  118. I. Kamata, M. Nagano, H. Tsuchida, Y. Chen, M. Dudley: Investigation of character and spatial distribution of threading edge dislocations in 4H-SiC epilayers by high-resolution topography, J. Cryst. Growth 311, 1416–1422 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Govindhan Dhanaraj , Balaji Raghothamachar or Michael Dudley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Dhanaraj, G., Raghothamachar, B., Dudley, M. (2010). Growth and Characterization of Silicon Carbide Crystals. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_23

Download citation

Publish with us

Policies and ethics