Abstract
Zinc oxide (ZnO) and gallium nitride (GaN) are wide-bandgap semiconductors with a wide array of applications in optoelectronic and electronics. The lack of low-cost, low-defect ZnO and GaN substrates has slowed development and hampered performance of devices based on these two materials. Their anisotropic crystal structure allows the polar solvents, water and ammonia, to dissolve and crystallize ZnO and GaN at high pressure. Applying the techniques used for hydrothermal production of industrial single-crystal quartz to ZnO and GaN opens a pathway for the inexpensive growth of relatively larger crystals that can be processed into semiconductor wafers. This chapter will focus on the specifics of the hydrothermal growth of ZnO and the ammonothermal growth of GaN, emphasizing requirements for industrial scale growth of large crystals. Phase stability and solubility of hydrothermal ZnO and ammonothermal GaN is covered. Modeling of thermal and fluid flow gradients is discussed and simulations of thermal and temperature profiles in research-grade pressure systems are shown. Growth kinetics for ZnO and GaN respectively are reviewed with special interest in the effects of crystalline anisotropy on thermodynamics and kinetics. Finally, the incorporation of dopants and impurities in ZnO and GaN and how their incorporation modifies electrical and optical properties are discussed.
Keywords
- Zinc Oxide
- Gallium Nitride
- Darcy Number
- Hydrothermal Growth
- Retrograde Solubility
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options





































Abbreviations
- ALUM:
-
aluminum potassium sulfate
- CL:
-
cathode-ray luminescence
- CL:
-
cathodoluminescence
- CMOS:
-
complementary metal–oxide–semiconductor
- DMS:
-
discharge mass spectroscopy
- DVD:
-
digital versatile disk
- EPR:
-
electron paramagnetic resonance
- FWHM:
-
full width at half-maximum
- GDMS:
-
glow-discharge mass spectrometry
- GS:
-
growth sector
- HPAT:
-
high-pressure ammonothermal technique
- HVPE:
-
halide vapor-phase epitaxy
- HVPE:
-
hydride vapor-phase epitaxy
- IR:
-
infrared
- KDP:
-
potassium dihydrogen phosphate
- LED:
-
light-emitting diode
- MMIC:
-
monolithic microwave integrated circuit
- MOCVD:
-
metalorganic chemical vapor deposition
- MOCVD:
-
molecular chemical vapor deposition
- PL:
-
photoluminescence
- PT:
-
pressure–temperature
- RF:
-
radiofrequency
- SAW:
-
surface acoustical wave
- SEM:
-
scanning electron microscope
- SEM:
-
scanning electron microscopy
- SIMS:
-
secondary-ion mass spectrometry
- SWBXT:
-
synchrotron white beam x-ray topography
- TDMA:
-
tridiagonal matrix algorithm
- UV:
-
ultraviolet
References
F. Bernardini, V. Fiorentini, D. Vanderbilt: Spontaneous polarization and piezoelectric contants of III-V nitrides, Phys. Rev. B 56(R10), 24–27 (1997)
S.J. Pearton, C.R. Abernathy, F. Ren: Gallium Nitride Processing for Electronics, Sensors and Spintronics (Springer, Berlin Heidelberg 2006)
B. Gil: Low-Dimensional Nitride Semiconductors (Oxford Univ. Press, Oxford 2002)
C. Jagadish, S.J. Pearton: Zinc Oxide, Thin Films and Nanostructions: Processing, Properties, and Applications (Elsevier Science, Amsterdam 2006)
Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avruntin, S.-J. Cho, H. Morkoç: A comprehensive review of ZnO material and devices, Appl. Phys. Rev. 98(041301), 1–103 (2005)
I. Akasaki: Key inventions in the history of nitride-base blue LED and LD, J. Cryst. Growth 300, 2–10 (2007)
C. Klingshirn, R. Hauschild, H. Priller, M. Decker, J. Zeller, H. Kalt: ZnO rediscovered – once again!?, Superlattice Microstruct. 38, 209–222 (2005)
H.J. Scheel: Historical aspects of crystal growth technology, J. Cryst. Growth Technol. 211, 1–12 (2000)
J. Nause, B. Nemeth: Pressurized melt growth of ZnO boules, Semicond. Sci. Technol. 20, S45–S48 (2005)
J. Karpiński, J. Jun, S. Porowski: High pressure thermodynamics of GaN, J. Cryst. Growth 66, 1–10 (1984)
H.D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma: Phonon replicas in ZnO/ZnMgO multiquantum wells, J. Appl. Phys. Lett. 91(10), 6450–6457 (2002)
D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch: Electrical properties of bulk ZnO, Solid-State Commun. 105, 399–401 (1998)
D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshikawa, T. Fukuda: Solvothermal growth of ZnO, Prog. Cryst. Growth Charact. Mater. 52, 280–335 (2006)
D.A. Kramer: Nitrogen (fixed) Ammonia. In: US Geological Survey, ed. by US Department of the Interior (United States Government Printing Office, Washington 2005) pp. 116–117
K. Byrappa, M. Yoshimura: Handbook of Hydrothermal Technology (William Andrew, New York 2001)
M.T. Harris, J.J. Larkin, J.J. Martin: Low-defect colorless Bi_12SiO_20 grown by hydrothermal techniques, Appl. Phys. Lett. 60, 2162–2163 (1992)
T. Hashimoto, K. Fujito, M. Saito, J.S. Speck, S. Nakamura: Ammonothermal growth of GaN on an over-1-inch seed crystal, Jpn. J. Appl. Phys. 44, L1570–1572 (2005)
R.A. Laudise: Hydrothermal Growth in The Growth of Single Crystals (Prentice-Hall, New Jersey 1970) pp. 275–293
H. Jacobs, D. Schmidt: High-pressure ammonolosis in solid-state chemistry. In: Current Topics in Materials Science, Vol. 8, ed. by E. Kaldis (North Holland, Amsterdam 1982) pp. 381–427
B. Wang, M.J. Callahan: Ammonothermal synthesis of III-nitride crystals, Cryst. Growth Des. 6(6), 1227–1246 (2006)
M. Suscavage, M. Harris, D. Bliss, P. Yip, S.Q. Wang, D. Schwall, L. Bouthillette, J. Bailey, M. Callahan, D.C. Look, D.C. Reynolds, R.L. Jones, C.W. Litton: High quality ZnO crystal, Mater. Res. Soc. Symp. Proc. 537, 294–299 (1999)
R. R. Monchamp, R. C. Puttbach, J. W. Nielson: Hydrothermal growth of ZnO crystals (Airtron Division of Litton Industries, Morris Plains, technical report AFML-TR-67-144 1967)
R.A. Laudise, E.D. Kolb: The solubity of zincite in basic hydrothermal solvents, Am. Mineral. 48(3), 642–648 (1963)
D.F. Croxall, R.C.C. Ward, C.A. Wallace, R.C. Kell: Hydrothermal growth and investigation of Li-doped zinc oxide crystals of high purity and perfection, J. Cryst. Growth 22, 117 (1974)
N. Sakagami: Hydrothermal growth and characterization of ZnO single crystals of high purity, J. Cryst. Growth 99, 905–909 (1990)
L. Demianets, D. Kostomaro: Mechanism of zinc oxide single crystal growth under hydrothermal conditions, Ann. Chim. Sci. Mater. 26(1), 193–198 (2001)
I.P. Kuzʼmina, A.N. Lobachev, N.S. Triodina: Synthesis of Zincite by the Hydrothermal Method in Crystallization Process Under Hydrothermal Conditions (Nauka, Moscow 1973) pp. 27–41
T. Fukuda, D. Ehrentraut: Prospects for the ammonothermal growth of large GaN crystals, J. Cryst. Growth 305, 304–310 (2007)
E.V. Kortunova, P.P. Chvanski, N.G. Nikolaeva: The first attempts of industrial manufacture of ZnO single crystals, J. Phys. IV France 126, 39–42 (2005)
L.E. McCandlish, R. Urhin: Mild conditions for hydrothermal growth of ZnO with potential for p-type semiconductor behavior, Poster Presentation at 5th Int. Conf. Solvotherm. React. Conf (East Brunswick, 2002), image supplied directly by L.E. McCandlish
G.F. Hüttig, H. Möldner: The specific heat of crystallized zinc hydroxide and calculation of the affinities between zinc oxide and water, Z. Anorg. Chem. 211, 368–378 (1933)
C.H. Lu, C.H. Yeh: Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder, Ceram. Int. 26, 351–357 (2000)
R.A. Laudise, A.A. Ballman: Hydrothermal synthesis of zinc oxide and zinc sulfide, J. Phys. Chem. 64(5), 688–691 (1960)
M.M. Lencka, R.E. Riman: Synthesis of lead titanate: thermodynamic modeling and experimental verification, J. Am. Ceram. Soc. 76, 2649–2659 (1993)
M.M. Lencka, A. Anderko, R.E. Riman: Hydrothermal precipitation of lead zirconate titanate solid solutions: thermodynamic modeling and experimental synthesis, J. Am. Ceram. Soc. 78, 2609–2618 (1995)
M.M. Lencka, R.E. Riman: Themodynamic modeling of hydrothermal synthesis of ceramic powders, Chem. Mater. 5, 61–70 (1993)
R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, J.M. Baranowski, M. Kaminska: AMMONO method of GaN and AlN production, Diam. Relat. Mater. 7, 1348–1350 (1998)
A.P. Purdy: Ammonothermal sythesis of cubic gallium nitride, Chem. Mater. 11, 1648–1651 (1999)
D.R. Ketchum, J.W. Kolis: Crystal growth of gallium nitride in supercritical ammonia, J. Cryst. Growth 222, 431–434 (2001)
A. Yoshikawa, E. Ohshima, T. Fukuda, H. Tsuji, K. Oshima: Crystal growth of GaN by ammonothermal method, J. Cryst. Growth 260, 67–72 (2004)
Y.C. Lan, X.L. Chen, M.A. Crimp, Y.G. Cao, Y.P. Xu, T. Xu, K.Q. Lu: Single crystal growth of gallium nitride in supercritical ammonia, Phys. Status Solidi (c) 2(7), 2066–2069 (2005)
B. Wang, M.J. Callahan, K. Rakes, D.F. Bliss, L.O. Bouthillette, S.-Q. Wang, J.W. Kolis: Ammonothermal growth of GaN crystals in alkaline solutions, J. Cryst. Growth 287, 376–380 (2006)
Y. Kagamitani, D. Ehrentraut, A. Yoshikawa, N. Hoshino, T. Fukuda, S. Kawabata, K. Inaba: Ammonothermal epitaxy of thick GaN film using NH_4Cl mineralizer, Jpn. J. Appl. Phys. 45(5A), 4018–4020 (2006)
D. Peters: Ammonothermal synthesis of aluminium nitride, J. Cryst. Growth 104, 411–418 (1990)
B. Wang, M.J. Callahan: Transport growth of GaN crystals by the ammonothermal technique using various nutrients, J. Cryst. Growth 291, 455–460 (2006)
A.P. Purdy, R.J. Jouet, F.G. Clifford: Ammonothermal recrystallization of gallium nitride with acidic mineralizers, Cryst. Growth Des. 2(2), 141–145 (2002)
D. Ehrentraut, N. Hoshino, Y. Kagamitani, A. Yoshikawa, T. Fukuda, H. Itoh, S. Kawabata: Temperature effect of ammonium halogenides as mineralizers on the phase stability of gallium nitride synthesized under acidic ammonothermal conditions, J. Mater. Chem. 17, 886–893 (2007)
B. Raghothamachar, W.M. Vetter, M. Dudley, R. Dalmau, R. Schlesser, Z. Sitar, E. Michael, J.W. Kolis: Synchrontron white beam topography charctrization of physical vapor transport grown AlN and ammonothermal GaN, J. Cryst. Growth 246, 271–280 (2002)
A.P. Purdy, S. Case, N. Murastore: Synthesis of GaN by high-pressure ammonolysis of gallium triiodide, J. Cryst. Growth 252, 136–143 (2003)
T. Hashimoto, K. Fujito, R. Sharma, E.R. Letts, P.T. Fini, J.S. Speck, S. Nakamura: Phase selection of microcrystalline GaN synthesized in supercritical ammonia, J. Cryst. Growth 291, 100–106 (2006)
A. Purdy: Growth of cubic GaN crystals from hexagonal GaN feedstock, J. Cryst. Growth 281, 355–363 (2005)
A.N. Mariano, R.E. Hanneman: Crystallographic polarity of ZnO crystals, J. Appl. Phys. 34, 384–389 (1963)
B. Wang, M.J. Callahan, L.O. Bouthillette: Hydrothermal growth and photoluminescence of Zn_1-xMg_xO alloy crystals, Cryst. Growth Des. 6, 1256–1260 (2006)
M. J. Callahan, B. Wang, unpublished results
Q.-S. Chen, V. Prasad, W.R. Hu: Modeling of ammonothermal growth of nitrides, J. Cryst. Growth 258, 181–187 (2003)
M. Carr: Penetrative convection in a superposed porous-medium-fluid layer via internal heating, J. Fluid Mech. 509, 305–329 (2004)
V. Prasad: Convective flow interaction and heat transfer between fluid and porous layers. In: Convective Heat and Mass Transfer in Porous Media, ed. by S. Kakaç, B. Kilkiş, F.A. Kulacki, F. Arinç (Kluwer, Netherlands 1991) pp. 563–615
Q.-S. Chen, V. Prasad, A. Chatterjee, J. Larkin: A porous media-based transport model for hydrothermal growth, J. Cryst. Growth 198/199, 710–715 (1999)
Q.-S. Chen, V. Prasad, A. Chatterjee: Modeling of fluid flow and heat transfer in a hydrothermal crystal growth system: use of fluid-superposed porous layer theory, J. Heat Transf. 121, 1049–1058 (1999)
H. Zhang, V. Prasad, M.K. Moallemi: Numerical algorithm using multizone adaptive grid generation for multiphase transport processes with moving and free boundaries, Num. Heat Transf. 29(B), 399–421 (1996)
H. Zhang, V. Prasad: An advanced numerical scheme for materials process modeling, Comput. Model. Simul. Eng. 2, 322–343 (1997)
Q.-S. Chen, S. Pendurti, V. Prasad: Effects of baffle design on fluid flow and heat transfer in ammonothermal growth of nitrides, J. Cryst. Growth 266, 271–277 (2004)
A.J. Chapman: Heat Transfer (Macmillan, New York 1984)
M. Callahan, B.-G. Wang, K. Rakes, D. Bliss, L. Bouthillette, M. Suscavage, S.-Q. Wang: GaN single crystals grown on HVPE seeds in alkaline supercritical ammonia, J. Mater. Sci. 41, 1399–1407 (2006)
Q.-S. Chen, S. Pendurti, V. Prasad: Modeling of ammonothermal growth of gallium nitride single crystals, J. Mater. Sci. 41, 1409–1414 (2006)
T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, N. Sakagami: Hydrothermal growth of ZnO single crystals and their optical characterization, J. Cryst. Growth 214/215, 72–76 (2000)
L.N. Demianets, D.V. Kostomarov, I.P. Kuzʼmina, S.V. Pushko: Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions, Cryst. Rep. 47, S86–S98 (2002), Supp 1
B.G. Wang: Understanding and controlling the morphology of ZnO crystallites under hydrothermal conditions, Cryst. Res. Technol. 32, 659–667 (1997)
W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin: Growth mechanism and growth habit of oxide crystals, J. Cryst. Growth 203, 186–196 (1999)
I.L. Khodakovskiy, A.Y. Yelkin: Measurement of the solubility of zincite in aqueous NaOH at 100, 150, and 200 °C, Geokhimiya 10, 1490–1498 (1975)
P. Bénézeth, D. Palmer, D. Wesolowski: The solubility of zinc oxide in 0.03 m NaTr as a function of temperature with in-situ pH measurement, Geochim. Cosmochi. Acta 63, 1571–1586 (1999)
B.G. Wang, E.W. Shi, W.Z. Zhong: Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions, Cryst. Res. Technol. 33, 937–941 (1998)
M.M. Lukina, M.V. Lelekova, V.E. Khadzhi: Effect of lithium on the growth rate of zincite and quartz under hydrothermal conditions, Sov. Phys. Crystallogr. 15, 530–531 (1970)
R.A. Laudise, R.L. Barnes: Perfection of quartz and its connection to crystal growth, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control. 35, 277–287 (1998)
A.F. Armington: Recent advances in the growth of high quality quartz, Prog. Cryst. Growth Charact. 21, 97–111 (1990)
E.D. Kolb, R.A. Laudise: Hydrothermally grown ZnO crystals of low and intermediate resistivity, J. Am. Ceram. Soc. 49, 302–305 (1966)
E.D. Kolb, S. Coriell, R.A. Laudise, A.R. Hutson: The hydrothermal growth of low carrier concentration ZnO at high water and hydrogen pressures, Mater. Res. Bull 2, 1099–1106 (1967)
I.P. Kuzʼmina: Crystallization kinetics of zincite under hydrothermal conditions, Sov. Phys. Crystallogr. 13(5), 803–805 (1969), translated from Kristallogr., Vol. 13, No.5
G. Dhanaraj, M. Dudley, D. Bliss, M. Callahan, M. Harris: Growth and process induced dislocation in zinc oxide crystals, J. Cryst. Growth 297, 74–79 (2006)
H. Youping, Z. Jinbo, W. Dexang, S. Genbo, Y. Mingshan: New technology of KDP crystal growth, J. Cryst. Growth 169, 196–198 (1996)
B. Wang, M.J. Callahan, C. Xu, L.O. Bouthillette, N.C. Giles, D.F. Bliss: Hydrothermal growth and characterization of indium-doped-conducting ZnO crystals, J. Cryst. Growth 304, 73–79 (2007)
N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell: Role of copper in the green luminescence from ZnO crystals, Appl. Phys. Lett. 81, 622–624 (2002)
E.D. Kolb, R.A. Laudise: Hydrothermally grown ZnO crystals of low and intermediate resistivity, J. Am. Ceram. Soc. 49, 302–305 (1966)
C.G. Van de Walle: Hydrogen as a cause of doping in zinc oxide, Phys. Rev. Lett. 85(5), 1012–1015 (2000)
R. Littbarski: Carrier concentration and mobility. In: Current Topics in Materials Science, Vol. 7, ed. by E. Kaldis (North-Holland, Amsterdam 1981) pp. 212–225
B. Theys, V. Sallet, F. Jomard, A. Lusson, J. Rommeluère, Z. Teukam: Effects of intentionally introduced hydrogen on the electric properties of ZnO layers grown by metalorganic chemical vapor deposition, J. Appl. Phys. 91, 3922–3924 (2002)
D.C. Look, J.W. Hemsky, J.R. Sizelove: Residual native shallow donor in ZnO, Phys. Rev. Lett. 82, 2552–2555 (1999)
A. Urbieta, P. Fernández, J. Piqueras, T. Sekiguchi: Scanning tunneling spectroscopy characterization of ZnO single crystals, Semicond. Sci. Technol. 16, 589–593 (2001)
N. Sakagami, M. Yamashita, T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido: Variation of electrical properties on growth sectors of ZnO single crystals, J. Cryst. Growth 229, 98–103 (2001)
M. Yoneta, K. Yoshino, M. Ohishi, H. Saito: Photoluminescense studies of high-quality ZnO single crystals by hydrothermal method, Phys. B 376–377, 745–748 (2006)
J. Mass, M. Avella, J. Jiménez, M. Callahan, E. Grant, K. Rakes, D. Bliss, B. Wang: Cathodoluminescence characterization of hydrothermal ZnO crystals, Superlattice Microstruct. 38, 223–230 (2005)
L.N. Demʼyanets, V.I. Lyutin: Status of hydrothermal growth of bulk ZnO: latest issues and advantages, J. Cryst. Growth 310, 993–999 (2008)
J. Mass, M. Avella, J. Jiménez, A. Rodriquez, T. Rodriquez, M. Callahan, D. Bliss, B. Wang: Cathodoluminescence study of ZnO wafer cut from hydrothermal crystals, J. Cryst. Growth 310, 1000–1005 (2008)
D.C. Reynolds, D.C. Look, B. Jogai, H. Morkoç: Simililarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN, Solid State Commun. 101, 643–646 (1997)
A. Urbieta, P. Fernández, J. Piqueras, C. Hardalov, T. Sekiguchi: Cathodoluminescence microscopy of hydrothermal and flux grown ZnO single crystals, J. Phys. D Appl. Phys. 34, 2945–2949 (2001)
A. Urbieta, P. Fernández, C. Hardalov, J. Piqueras, T. Sekiguchi: Cathodoluminescense and scanning tunneling spectroscopy, Mater. Sci. Eng. B91–92, 345–348 (2002)
J. Mass, M. Avella, J. Jiménez, M. Callahan, E. Grant, K. Rakes, D. Bliss, B. Wang: Visable luminescence in ZnO. In: New Materials and Procecesses for Incoming Semiconductor Technologies, ed. by S. Dueñas, H. Castán (Transworld Research Network, Kerala 2006)
D. Bliss: Zinc oxide. In: Encyclopedia of Advanced Materials, ed. by D. Bloor, M.C. Flemings, R.J. Brook, S. Mahajan, R.W. Cahn (Pergamon, Oxford 1994) pp. 9888–9891
C. Woods, A.J. Drehman: Presentation, Natl. Space Missile Mater. Symp. (Monterey, 2001)
B. Wang, M. Callahan, J. Bailey: Synthesis of dense polycrystalline GaN of high purity by the chemical vapor reaction process, J. Cryst. Growth 286, 50–54 (2005)
K. Lee, K. Auh: Dislocation density of GaN grown by hydride vapor phase epitaxy, MRS Int. J. Nitride Semicond. Res. 6, 9 (2001)
B. Raghothamacher, J. Bai, M. Dudley, R. Dalmau, D. Zhuang, Z. Herro, R. Schlesser, Z. Sitar, B. Wang, M. Callahan, K. Rakes, P. Konkapaka, M. Spencer: Characterization of bulk-grown GaN and AlN single-crystals materials, J. Cryst. Growth 287, 349–353 (2006)
M.J. Callahan, B. Wang, L. Bouthillette, S.-Q. Wang, J.W. Kolis, D. Bliss: Growth of GaN crystals under ammonothermal conditions, MRS Fall Meet. Symp. Proc. 798, Y2.10 (2004)
T. Hashimoto, M. Saito, K. Fujito, F. Wu, J.S. Speck, S. Nakamura: Seeded growth of GaN by the basic ammonothermal method, J. Cryst. Growth 305, 311–316 (2007)
Images provided by Prof. Brian Skrommeʼs group, Arizona St. Univ.
T. Hashimoto, K. Fujito, F. Wu, B.A. Haskell, P.T. Fini, J.S. Speck, S. Nakamura: Structural characterization of thick GaN films grown on free-standing GaN seeds by the ammonothermal method using basic ammonia, Jpn. J. Appl. Phys. 44(25), L797–L799 (2005)
R. Dwilinski, R. Doradzinski, J. Garzynski, L.P. Sierzputowski, A. Puchalski, Y. Kanaba, K. Yagi, H. Minakuchi, H. Hayashi: Excellent crystallinity of truly bulk ammonothermal GaN, J. Cryst. Growth 310, 3911–3916 (2008)
J. Bai, M. Dudley, B. Raghothamachar, P. Gouma, B.J. Skrome, L. Chen, P.J. Hartlieb, E. Michaels, J. Kolis: Correlated structural and optical characterization of ammonothermally grown bulk GaN, Appl. Phys. Lett. 84(17), 3289–3291 (2004)
M.P. DʼEvelyn, H.C. Hong, D.-S. Park, H. Lu, E. Kaminsky, R.R. Melkote, P. Perlin, M. Lesczynski, S. Porowski, R.J. Molnar: Bulk GaN crystal growth by th high-pressure ammonothermal method, J. Cryst. Growth 300, 11–16 (2007)
S.V. Bhat, K. Biswas, C.N.R. Rao: Synthesis and optical properties of In-doped GaN nanocrystals, Solid State Commun. 141, 325–328 (2007)
B.T. Adekore, K. Rakes, B. Wang, M.J. Callahan, S. Pendurti, Z. Sitar: Ammonothermal synthesis of aluminum nitride crystals on group III-nitride templates, J. Electron. Mater. 35, 1104–1111 (2006)
M. Zajac, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski: Ammomonothermal sythesis of GaN doped with transition metal ions (Mn, Fe, Cr), J. Alloys Compd. 456, 324–338 (2008)
A. Denis, G. Goglio, G. Demazeau: Gallium nitride bulk crystal growth processes: a review, Mater. Sci. Eng. R 50, 167–194 (2006)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag
About this chapter
Cite this chapter
Callahan, M.J., Chen, QS. (2010). Hydrothermal and Ammonothermal Growth of ZnO and GaN. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-74761-1_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74182-4
Online ISBN: 978-3-540-74761-1
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)