Skip to main content

Massless Four-Loop Integrals and the Total Cross Section in e+ e− Annihilation

  • Conference paper
High Performance Computing in Science and Engineering `07

Abstract

The main purpose of particle physics is the explanation of the fundamental mechanism for the interaction of the elementary particles. On the experimental side the investigations take mainly place at the big accelerators at CERN (Geneva) or FERMILAB (Chicago). On the other hand it it essential to develop theoretical models which describe the fundamental interactions and which, of course, have to be confronted with the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. J. Yndurain, “Relativistic quantum mechanics and introduction to field theory,” Berlin, Germany: Springer (1996) 332 p. (Text and monographs in physics)

    Google Scholar 

  2. K. G. Chetyrkin, J. H. Kuhn and A. Kwiatkowski, “QCD corrections to the e+ e- cross-section and the Z boson decay rate: Concepts and results,” Phys. Rept. 277 (1996) 189.

    Article  Google Scholar 

  3. R. V. Harlander and M. Steinhauser, “rhad: A program for the evaluation of the hadronic R-ratio in the perturbative regime of QCD,” Comput. Phys. Commun. 153 (2003) 244 [arXiv:hep-ph/0212294].

    Article  Google Scholar 

  4. K. G. Chetyrkin and A. Khodjamirian, “Strange quark mass from pseudoscalar sum rule with O(alpha(s)**4) accuracy,” Eur. Phys. J. C 46 (2006) 721 [arXiv:hep-ph/0512295].

    Article  Google Scholar 

  5. M. Tentyukov, D. Fliegner, M. Frank, A. Onischenko, A. Retey, H. M. Staudenmaier and J. A. M. Vermaseren, “ParFORM: Parallel Version of the Symbolic Manipulation Program FORM,” arXiv:cs.sc/0407066; M. Tentyukov, H. M. Staudenmaier and J. A. M. Vermaseren, “ParFORM: Recent development,” Nucl. Instrum. Meth. A 559 (2006) 224. H. M. Staudenmaier, M. Steinhauser, M. Tentyukov, J. A. M. Vermaseren, “ParFORM,” Computeralgebra Rundbriefe 39 (2006) 19. See also http://www-ttp.physik.uni-karlsruhe.de/∼parform.

    Google Scholar 

  6. FORM version 3.0 is described in: J. A. M. Vermaseren, “New features of FORM,” arXiv:math-ph/0010025; for recent developments, see also: M. Tentyukov and J. A. M. Vermaseren, “Extension of the functionality of the symbolic program FORM by external software,” arXiv:cs.sc/0604052; FORM can be obtained from the distribution site at http://www.nikhef.nl/∼form.

    Google Scholar 

  7. M. Tentyukov and J. A. M. Vermaseren, “The multithreaded version of FORM,” arXiv:hep-ph/0702279.

    Google Scholar 

  8. S. Laporta and E. Remiddi, “The analytical value of the electron (g-2) at order alpha 3 in QED,” Phys. Lett. B 379 (1996) 283 [arXiv:hep-ph/9602417].

    Article  Google Scholar 

  9. S. Laporta, “High-precision calculation of multi-loop Feynman integrals by difference equations,” Int. J. Mod. Phys. A 15, 5087 (2000) [arXiv:hep-ph/0102033].

    MATH  MathSciNet  Google Scholar 

  10. R. H. Lewis, Fermat’s User Guide, http://www.bway.net/∼lewis.

    Google Scholar 

  11. P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, “Five-loop vacuum polarization in pQCD: O(alpha(s)**4 N(f)**2) results,” Nucl. Phys. Proc. Suppl. 116 (2003) 78.

    Article  Google Scholar 

  12. P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, “Vacuum polarization in pQCD: First complete O(alpha(s)**4) result,” Nucl. Phys. Proc. Suppl. 135 (2004) 243.

    Article  Google Scholar 

  13. P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, “Strange quark mass from tau lepton decays with O(alpha(s**3)) accuracy,” Phys. Rev. Lett. 95 (2005) 012003 [arXiv:hep-ph/0412350].

    Article  Google Scholar 

  14. P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, “Scalar correlator at O(alpha(s)**4), Higgs decay into b-quarks and bounds on the light quark masses,” Phys. Rev. Lett. 96 (2006) 012003 [arXiv:hep-ph/0511063].

    Article  Google Scholar 

  15. K. G. Chetyrkin and F. V. Tkachov, “Integration By Parts: The Algorithm To Calculate Beta Functions In 4 Loops,” Nucl. Phys. B 192 (1981) 159.

    Article  Google Scholar 

  16. P. A. Baikov, “Explicit solutions of the multi-loop integral recurrence relations and its application,” Nucl. Instrum. Meth. A 389 (1997) 347 [arXiv:hep-ph/9611449].

    Article  Google Scholar 

  17. P.A. Baikov, “Explicit solutions of the three loop vacuum integral recurrence relations,” Phys. Lett. B 385 (1996) 404 [arXiv:hep-ph/9603267].

    Article  Google Scholar 

  18. P. A. Baikov, “The criterion of irreducibility of multi-loop Feynman integrals,” Phys. Lett. B 474 (2000) 385 [arXiv:hep-ph/9912421].

    Article  MATH  MathSciNet  Google Scholar 

  19. P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, “The cross section of e+ e- annihilation into hadrons of order alpha(s)**4 n(f)**2 in perturbative QCD,” Phys. Rev. Lett. 88 (2002) 012001 [arXiv:hep-ph/0108197].

    Article  Google Scholar 

  20. P. A. Baikov and K. G. Chetyrkin, “Higgs decay into hadrons to order alpha(s)**5,” Phys. Rev. Lett. 97 (2006) 061803 [arXiv:hep-ph/0604194].

    Article  Google Scholar 

  21. G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa and A. Vladikas, “A General Method For Nonperturbative Renormalization Of Lattice Operators,” Nucl. Phys. B 445 (1995) 81 [arXiv:hep-lat/9411010].

    Article  Google Scholar 

  22. M. Gockeler et al., “Nonperturbative renormalisation of composite operators in lattice QCD,” Nucl. Phys. B 544 (1999) 699 [arXiv:hep-lat/9807044].

    Article  Google Scholar 

  23. D. J. Broadhurst and A. G. Grozin, “Matching QCD And Hqet Heavy - Light Currents At Two Loops And Beyond,” Phys. Rev. D 52 (1995) 4082 [arXiv:hep-ph/9410240].

    Article  Google Scholar 

  24. V. M. Braun, T. Burch, C. Gattringer, M. Gockeler, G. Lacagnina, S. Schaefer and A. Schafer, “A lattice calculation of vector meson couplings to the vector and tensor currents using chirally improved fermions,” Phys. Rev. D 68 (2003) 054501 [arXiv:hep-lat/0306006].

    Article  Google Scholar 

  25. D. Becirevic, V. Lubicz, F. Mescia and C. Tarantino, “Coupling of the light vector meson to the vector and to the tensor current,” JHEP 0305 (2003) 007 [arXiv:hep-lat/0301020].

    Article  Google Scholar 

  26. P. A. Baikov and K. G. Chetyrkin, “New four loop results in QCD,” Nucl. Phys. Proc. Suppl. 160 (2006) 76.

    Article  MathSciNet  Google Scholar 

  27. D. J. Broadhurst, “Four-loop Dyson-Schwinger-Johnson anatomy,” Phys. Lett. B 466 (1999) 319 [arXiv:hep-ph/9909336].

    Article  Google Scholar 

  28. A. Connes and D. Kreimer, “Renormalization in quantum field theory and the Riemann-Hilbert problem,” JHEP 9909 (1999) 024 [arXiv:hep-th/9909126].

    Article  MathSciNet  Google Scholar 

  29. J. H. Kuhn, M. Steinhauser and C. Sturm, “Heavy quark masses from sum rules in four-loop approximation,” arXiv:hep-ph/0702103.

    Google Scholar 

  30. R. Boughezal, M. Czakon and T. Schutzmeier, “Four-loop tadpoles: Applications in QCD,” Nucl. Phys. Proc. Suppl. 160 (2006) 160 [arXiv:hep-ph/0607141].

    Article  Google Scholar 

  31. K. G. Chetyrkin, J. H. Kuhn and M. Steinhauser, “Heavy quark current correlators to O(alpha(s)**2),” Nucl. Phys. B 505 (1997) 40 [arXiv:hep-ph/9705254].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kühn, J., Steinhauser, M., Tentyukov, M. (2008). Massless Four-Loop Integrals and the Total Cross Section in e+ e− Annihilation. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering `07. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74739-0_3

Download citation

Publish with us

Policies and ethics