Advertisement

High-Speed True Random Number Generation with Logic Gates Only

  • Markus Dichtl
  • Jovan Dj. Golić
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4727)

Abstract

It is shown that the amount of true randomness produced by the recently introduced Galois and Fibonacci ring oscillators can be evaluated experimentally by restarting the oscillators from the same initial conditions and by examining the time evolution of the standard deviation of the oscillating signals. The restart approach is also applied to classical ring oscillators and the results obtained demonstrate that the new oscillators can achieve orders of magnitude higher entropy rates. A theoretical explanation is also provided. The restart and continuous modes of operation and a novel sampling method almost doubling the entropy rate are proposed. Accordingly, the new oscillators appear to be by far more effective than other known solutions for random number generation with logic gates only.

Keywords

Random number generation ring oscillators generalized ring oscillators logic gates true randomness 

References

  1. 1.
    Bock, H., Bucci, M., Luzzi, R.: Offset-compensated oscillator-based random bit source for security applications. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 268–281. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Bucci, M., Luzzi, R.: Design of testable random bit generators. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 147–156. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Coppock, W.R., Philbrook, C.R.: A mathematical and physical analysis of circuit jitter with application to cryptographic random bit generation, Worcester Polytechnic Inst., Major Qualifying Project Report (April 2005)Google Scholar
  4. 4.
    Dichtl, M.: How to predict the output of a hardware random number generator. In: Walter, D.C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 181–188. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Dichtl, M.: A closer look at a provably secure true random number generator, unpublished paper, submitted to and rejected from CHES 2007Google Scholar
  6. 6.
    Epstein, M., Hars, L., Krasinski, R., Rosner, M., Zheng, H.: Design and implementation of a true random number generator based on digital circuits artifacts. In: Walter, D.C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 152–165. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Fairfield, R.C., Mortenson, R.L., Coulthart, K.B.: An LSI random number generator (RNG). In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 203–230. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  8. 8.
    Golić, J.Dj.: New methods for digital generation and postprocessing of random data. IEEE Trans. Computers 55(10), 1217–1229 (2006)CrossRefGoogle Scholar
  9. 9.
    Juels, A., Jakobsson, M., Shriver, E., Hillyer, B.K.: How to turn loaded dice into fair coins. IEEE Trans. Information Theory 46(3), 911–921 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jun, B., Kocher, P.: The Intel random number generator, White paper for Intel Corporation, Cryptography Research Inc. (April 1999), available at http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf
  11. 11.
    Killmann, W., Schindler, W.: AIS 31: Functionality Classes and Evaluation Methodology for True (Physical) Random Number Generators, version 3.1, Bundesamt fur Sicherheit in der Informationstechnik (BSI), Bonn (2001)Google Scholar
  12. 12.
    Schindler, W.: A stochastical model and its analysis for a physical random number generator presented at CHES 2002. In: Paterson, K.G. (ed.) Cryptography and Coding. LNCS, vol. 2898, pp. 276–289. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Schellekens, D., Preneel, B., Verbauwhede, I.: FPGA vendor agnostic true random number generator. In: Proc. 16th Int. Conf. Field Programmable Logic and Applications - FPL 2006 (to appear)Google Scholar
  14. 14.
    Sunar, B., Martin, W., Stinson, D.: A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Computers 56(1), 109–119 (2007)CrossRefGoogle Scholar
  15. 15.
    Tkacik, T.E.: A hardware random number generator. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 450–453. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Tsoi, K.S., Leung, K.H., Leong, P.H.W.: Compact FPGA-based true and pseudo random number generators. In: Proc. 11th IEEE Annual Symposium on Field-Programmable Custom Computing Machines, p. 51 (April 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Markus Dichtl
    • 1
  • Jovan Dj. Golić
    • 2
  1. 1.Siemens AG, Corporate Technology, MunichGermany
  2. 2.Telecom Italia, Security Innovation, TurinItaly

Personalised recommendations