RF-DNA: Radio-Frequency Certificates of Authenticity

  • Gerald DeJean
  • Darko Kirovski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4727)


A certificate of authenticity (COA) is an inexpensive physical object that has a random and unique multidimensional structure S which is hard to near-exactly replicate. An inexpensive device should be able to scan object’s physical “fingerprint,” i.e., obtain a set of features in the form of a multidimensional signal x that pseudo-uniquely represents S. For a given “fingerprint” x and without access to S, it should be computationally difficult to construct an object of fixed dimensions with a “fingerprint” y which is at a bounded proximity from x according to a standardized distance metric. We introduce objects that behave as COAs in the electromagnetic field. The objective is to complement RFIDs so that they are physically, not only digitally, unique and hard to replicate. By enabling this feature, we introduce a tag whose information about the product can be read within a relative far-field, and also whose authenticity can be reliably verified within its near-field. In order to counterfeit a tag, the adversary faces two difficulties – a computational and a manufacturing one. The computational difficulty stems from the hardness of solving linear inverse problems in the electromagnetic field. In order to create an actual tag, the adversary must also manufacture a multidimensional object with a specific three-dimensional topology, dielectric properties, and conductivity.


  1. 1.
    Bauder, D.W.: Personal CommunicationGoogle Scholar
  2. 2.
    Tsang, L., et al.: Scattering of Electromagnetic Waves. Wiley Interscience, Chichester (2000&2001)Google Scholar
  3. 3.
    Ewald, P.P.: Ann. der Physik, vol. 49, pp. 1–56 (1915)Google Scholar
  4. 4.
    Oseen, C.W.: Uber die Wechrelwirkung zwischen zwei elektrischen Dipolen und uber die Drehung der Polarisationsebene in Kristallen und Flussigkeiten. Ann. der Physik 48, 1–56 (1915)CrossRefGoogle Scholar
  5. 5.
    Wolf, E.: A generalized extinction theorem and its role in scattering theory. In: Mandel, L., Wolf, E. (eds.) Coherence and Quantum Optics. Plenum, New York (1973)Google Scholar
  6. 6.
    Neelakanta, P.S.: Handbook of Electromagnetic Materials. CRC Press, Boca Raton, FL, USA (1995)Google Scholar
  7. 7.
    Tsang, L., et al.: Theory of Microwave Remote Sensing. Wiley-Interscience, New York (1985)Google Scholar
  8. 8.
    Microwave Engineering Europe. CAD benchmark (October 2000 – February 2001), Available on-line at: http://i.cmpnet.com/edtn/europe/mwee/pdf/CAD.pdf
  9. 9.
    Bellare, M., Rogaway, P.: The exact security of digital signatures how to sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–414. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Rivest, R.L., et al.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    ANSI X9.62-1998. Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA) (1998)Google Scholar
  12. 12.
    IEEE 1363-2000: Standard Specifications For Public Key Cryptography (2000)Google Scholar
  13. 13.
    Kirovski, D.: Toward An Automated Verification of Certificates of Authenticity. In: ACM Electronic Commerce, pp. 160–169. ACM Press, New York (2004)Google Scholar
  14. 14.
    Bauder, D.W.: An Anti-Counterfeiting Concept for Currency Systems. Research report PTK-11990. Sandia National Labs. Albuquerque, NM (1983)Google Scholar
  15. 15.
    Church, S., Littman, D.: Machine reading of Visual Counterfeit Deterrent Features and Summary of US Research, 1980-90. Four Nation Group on Advanced Counterfeit Deterrence, Canada (1991)Google Scholar
  16. 16.
    Commission on Engineering and Technical Systems (CETS). Counterfeit Deterrent Features for the Next-Generation Currency Design. The National Academic Press (1993)Google Scholar
  17. 17.
    Pappu, R.: Physical One-Way Functions. Ph.D. Thesis, MIT (2001)Google Scholar
  18. 18.
    Pappu, R., et al.: Physical One-Way Functions. Science 297(5589), 2026–2030 (2002)CrossRefGoogle Scholar
  19. 19.
    Collins, J.: RFID Fibers for Secure Applications. RFID Journal (2004), Available on-line at: http://www.rfidjournal.com/article/articleview/845/1/14
  20. 20.
    CrossID, Inc.: Firewall Protection for Paper Documents. Available on-line at: http://www.rfidjournal.com/article/articleview/790/1/44
  21. 21.
    Inkode, Inc.: Available on-line at: http://www.inkode.com
  22. 22.
    Creo, Inc.: Available on-line at: http://www.creo.com
  23. 23.
    RF SAW, Inc.: Available on-line at: http://www.rfsaw.com/tech.html
  24. 24.
    DeJean, G., Kirovski, D.: Radio Frequency Certificates of Authenticity. In: IEEE Antenna and Propagation Symposium. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  25. 25.
    MetaGeek, Inc.: WiSpy. Available on-line at: http://www.metageek.net
  26. 26.
    Tentzeris, M.: Personal communication (2006)Google Scholar
  27. 27.
    Yee, K.: Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation 14(3), 302–307 (1966)CrossRefGoogle Scholar
  28. 28.
    Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Pergamon Press, Oxford (1975)Google Scholar
  29. 29.
    Nieto-Vesperinas, M.: Scattering and Diffraction in Physical Optics. John Wiley & Sons, Inc., New York (1991)Google Scholar
  30. 30.
    Cho, S.K.: Electromagnetic scattering. Springer, New York (1990)Google Scholar
  31. 31.
    Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House Publishers (2005)Google Scholar
  32. 32.
    Monk, P.: Finite Element Methods for Maxwell’s Equations. Clarendon Press (2003)Google Scholar
  33. 33.
    Ansoft Corp. HFSS: 3D EM Solver. Available on-line at: http://www.ansoft.com/products/hf/hfss/new.cfm
  34. 34.
    Harrington, R.F.: Field Computation by Moment Methods. Wiley-IEEE Press (1990)Google Scholar
  35. 35.
    Clemens, M., Weiland, T.: Discrete electromagnetism with the finite integration technique. Electromagnetics Research, 65–87 (2001)Google Scholar
  36. 36.
    CST Corp.: Microwave Studio. Available on-line at: http://www.cst.de/Content/Products/MWS/Solvers.aspx
  37. 37.
    Xu, P., Tsang, L.: Scattering by rough surface using a hybrid technique combining the multilevel UV method with the sparse matrix canonical grid method. Radio Science, 40 (2005)Google Scholar
  38. 38.
    Chew, W.C.: Waves and Fields in Inhomogenous Media. Wiley-IEEE Press (1999)Google Scholar
  39. 39.
    Garcia, S.G., et al.: On the Accuracy of the ADI-FDTD Method. IEEE Antennas and Wireless Propagation Letters 1(1), 31–34 (2002)CrossRefGoogle Scholar
  40. 40.
    Namiki, T.: 3-D ADIFDTD Method Unconditionally Stable Time-Domain Algorithm for Solving Full Vector Maxwells Equations. IEEE Transactions on Microwave Theory and Techniques 48(10), 1743–1747 (2000)CrossRefGoogle Scholar
  41. 41.
    Veselago, G.: Sov. Phys. Usp. 10, 509 (1968)Google Scholar
  42. 42.
    Shelby, R.A., et al.: Science 292, 77 (2001)Google Scholar
  43. 43.
    Michel, C.M., et al.: EEG source imaging. Clinical Neurophysiology 115(10), 2195–2222 (2004)CrossRefGoogle Scholar
  44. 44.
    Haber, E., et al.: Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach. Geophysics 69(5), 1216–1228 (2004)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Avdeev, D.B.: Three-dimensional electromagnetic modelling and inversion: from theory to application. Surveys in Geophysics 26, 767–799 (2005)CrossRefGoogle Scholar
  46. 46.
    Menezes, A.J., et al.: Handbook of Applied Cryptography. CRC Press, Boca Raton, USA (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gerald DeJean
    • 1
  • Darko Kirovski
    • 1
  1. 1.Microsoft Research, Redmond, WA 98052USA

Personalised recommendations