Advertisement

Initialization

  • Peter LynchEmail author
  • Xiang-Yu Huang
Chapter

Abstract

The spectrum of atmospheric motions is vast, encompassing phenomena having periods ranging from seconds to millennia. The motions of interest to the forecaster typically have timescales of a day or longer, but the mathematical models used for numerical prediction describe a broader span of dynamical features than those of direct concern. For many purposes these higher frequency components can be regarded as noise contaminating the motions of meteorological interest. The elimination of this noise is achieved by adjustment of the initial fields, a process called initialization.

Keywords

Gravity Wave High Frequency Component Initial Field Slow Manifold Geostrophic Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baer, F., 1977. Adjustment of initial conditions required to suppress gravity oscillations in nonlinear flows. Beitr. Phys. Atmos., 50, 350–366.Google Scholar
  2. Bubnová, R., G. Hello, P. Bénard and J.-F. Geleyn, 1995. Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Weather Rev., 123, 515–535.CrossRefGoogle Scholar
  3. Charney, J.G., 1955. The use of the primitive equations of motion in numerical prediction. Tellus, 7, 22–26.CrossRefGoogle Scholar
  4. Charney, J.G., R. Fjørtoft and J. von Neumann, 1950. Numerical integration of the barotropic vorticity equation. Tellus, 2, 237–254.CrossRefGoogle Scholar
  5. Chen, M. and X.-Y. Huang, 2006. Digital filter initialization for MM5. Mon. Weather Rev., 134, 1222–1236.CrossRefGoogle Scholar
  6. Daley, R., 1991. Atmospheric Data Assimilation. Cambridge University Press, Cambridge, 457pp.Google Scholar
  7. Gauthier, P. and J.-N. Thépaut, 2001. Impact of the digital filter as a weak constraint in the pre-operational 4D-Var assimilation system of Météo-France. Mon. Weather Rev., 129, 2089–2102.CrossRefGoogle Scholar
  8. Gustafsson, N., 1992. Use of a digital filter as weak constraint in variational data assimilation. Proceedings of the ECMWF Workshop on Variational Assimilation, with Special Emphasis on Three-Dimensional Aspects, pp 327–338. Available from the European Centre for Medium Range Weather Forecasting, Shinfield Park, Reading, Berks. RG2 9AX, UK.Google Scholar
  9. Hamming, R.W., 1989. Digital Filters. Prentice-Hall International, Inc., Englewood Cliffs, NJ, 284pp.Google Scholar
  10. Haurwitz, B., 1940. The motion of atmospheric disturbances on the spherical earth. J. Marine Res., 3, 254–267.Google Scholar
  11. Hinkelmann, K., 1951. Der Mechanismus des meteorologischen Lärmes. Tellus, 3, 285–296.CrossRefGoogle Scholar
  12. Hinkelmann, K., 1959. Ein numerisches Experiment mit den primitiven Gleichungen. Vol. Rossby Memorial Volume. Rockerfeller lnstitute Press, New York, NY, pp 486–500.Google Scholar
  13. Holton, J.R., 1992. An Introduction to Dynamic Meteorology, 3rd edition. International Geophysics Series, vol. 48. Academic Press, San Diego. Chap. 7.Google Scholar
  14. Huang, X.-Y. and P. Lynch, 1993. Diabatic digital filter initialization: Application to the HIRLAM model. Mon. Weather Rev., 121, 589–603.CrossRefGoogle Scholar
  15. Huang, X.-Y., Q. Xiao, D.M. Barker, X. Zhang, J. Michalakes, W. Huang, T. Henderson, J. Bray, Y. Chen, Z. Ma, J. Dudhia, Y. Guo, X. Zhang, D.-J. Won, H.-C. Lin and Y.-H. Kuo, 2009. Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Weather Rev., 137, 299–314.CrossRefGoogle Scholar
  16. Huang, X.-Y. and X. Yang, 2002. A New Implementation of Digital Filtering Initialization Schemes for HIRLAM. Technical Report 53, 36pp. Available from HIRLAM-5, c/o Per Undén, SMHI, S-60176 Norrköping, Sweden.Google Scholar
  17. Kasahara, A., 1976. Normal modes of ultralong waves in the atmosphere. Mon. Weather Rev., 104, 669–690.CrossRefGoogle Scholar
  18. Leith, C.E., 1980. Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci., 37, 958–968.CrossRefGoogle Scholar
  19. Lynch, P., 1997. The Dolph-Chebyshev window: A simple optimal filter. Mon. Weather Rev., 125, 655–660.CrossRefGoogle Scholar
  20. Lynch, P., 2006. The Emergence of Numerical Weather Prediction: Richardson’s Dream. Cambridge University Press, Cambridge, 279pp.Google Scholar
  21. Lynch, P., D. Giard and V. Ivanovici, 1997. Improving the efficiency of a digital filtering scheme. Mon. Weather Rev., 125, 1976–1982.CrossRefGoogle Scholar
  22. Lynch, P. and X.-Y. Huang, 1992. Initialization of the HIRLAM model using a digital filter. Mon. Weather Rev., 120, 1019–1034.CrossRefGoogle Scholar
  23. Lynch, P., R. McGrath and A. McDonald, 1999. Digital Filter Initialization for HIRLAM. HIRLAM Technical Report 42, 22pp. Available from HIRLAM-5, c/o Per Undén, SMHI, S-60176 Norrköping, Sweden.Google Scholar
  24. Machenhauer, B., 1977. On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization. Beitr. Phys. Atmos., 50, 253–271.Google Scholar
  25. McIntyre, M.E., 2003. Balanced Flow. Vol. Encyclopedia of Atmospheric Sciences, J.R. Holton, J. Pyle, and J.A. Curry (eds.), 6 vols, ISBN 0-12-227090-8. Academic Press, London.Google Scholar
  26. Miyakoda, K. and R.W. Moyer, 1968. A method for initialization for dynamic weather forecasting. Tellus, 20, 115–128.CrossRefGoogle Scholar
  27. Oppenheim, A.V. and R.W. Schafer, 1989. Discrete-Time Signal Processing. Prentice-Hall International, Inc., Englewood Cliffs, NJ, 879pp.Google Scholar
  28. Phillips, N.A., 1960. On the problem of initial data for the primitive equations. Tellus, 12, 121–126.CrossRefGoogle Scholar
  29. Phillips, N.A., 1973. Principles of Large Scale Numerical Weather Prediction. Vol. Dynamic Meteorology, P. Morel (ed.). D. Reidel, Dordrecht, pp 1–96.Google Scholar
  30. Richardson, L.F., 1922. Weather Prediction by Numerical Process. Cambridge University Press, Cambridge, 236pp. Reprinted by Dover Publications, New York, 1965.Google Scholar
  31. Rossby, C.G., 1939. Relations between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semipermanent centers of action. J. Marine Res., 2, 38–55.CrossRefGoogle Scholar
  32. Sasaki, Y., 1958. An objective method based on the variational method. J. Met. Soc. Jpn, 36, 77–88.Google Scholar
  33. Wee, T.-K. and Y.-H. Kuo, 2004. Impact of a digital filter as a weak constraint in MM5 4DVAR: An observing system simulation experiment. Mon. Weather Rev., 132, 543–559.CrossRefGoogle Scholar
  34. Williamson, D. and C. Temperton, 1981. Normal mode initialization for a multilevel gridpoint model. Part II: Nonlinear aspects. Mon. Weather Rev., 109, 745–757.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.University College DublinDublinIreland
  2. 2.National Center for Atmospheric ResearchColoradoUSA

Personalised recommendations