Bias Estimation

  • Richard MénardEmail author


One of the standard assumptions in data assimilation is that observation and model errors are purely random, i.e., they do not contain systematic errors (see chapter Mathematical Concepts of Data Assimilation, Nichols). In reality, the distinction between random errors and systematic errors is somewhat academic.


Data Assimilation Bias Correction Model Bias Assimilation System Bias Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author wishes to thank Stephen Cohn for the careful review of the manuscript, and Olivier Talagrand and Dick Dee for their thoughtful review which helped clarify the assumptions and limitations built in these algorithms.


  1. Alexandersson, H. and A. Moberg, 1997. Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. Int. J. Climatol., 17, 25–34.CrossRefGoogle Scholar
  2. Amodei, L., 1995. Solution approché pour un problème d’assimilation des données météorologiques avec la prise en compte de l’erreur de modèle. Comptes Rendues de l’Académie des Sciences, 321, Série IIa, 1087–1094.Google Scholar
  3. Auligné, T., A.P. McNally and D.P. Dee, 2007. Adaptive bias correction for satellite data in a numerical weather prediction system. Q. J. R. Meteorol. Soc., 133, 631–642.CrossRefGoogle Scholar
  4. Baek, S-J., B.R. Hunt, E. Kalnay, E. Ott and I. Szunyogh, 2006. Local ensemble filtering in the presence of model bias. Tellus, 58A, 293–306.CrossRefGoogle Scholar
  5. Bennett, A.F., 1992. Inverse Methods in Physical Oceanography, Cambridge University Press, Cambridge, UK, 346pp.CrossRefGoogle Scholar
  6. Bennett, A.F., B.S. Chua and L.M. Leslie, 1996. Generalized inversion of a global numerical weather prediction model. Meteorol. Atmos. Phys., 60, 165–178.CrossRefGoogle Scholar
  7. Bennett, A.F., B.S. Chua and L.M. Leslie, 1997. Generalized inversion of a global numerical weather prediction model. II: Analysis and implementation. Meteorol. Atmos. Phys., 61, 129–140.CrossRefGoogle Scholar
  8. Bennett, A.F., L.H. Leslie, C.R. Hagelberg and P.E. Powers, 1993. Tropical cyclone prediction using a barotropic model initialized by a generalized inverse method. Mon. Weather Rev., 121, 1714–1729.CrossRefGoogle Scholar
  9. Chepurin, G.A., J.A. Carton and D.P. Dee, 2005. Forecast model bias correction in ocean data assimilation. Mon. Weather Rev., 133, 1328–1342.CrossRefGoogle Scholar
  10. Courtier, P., 1997. Dual formulation of four-dimensional variational assimilation. Q. J. R. Meteorol. Soc., 123, 2449–2461.CrossRefGoogle Scholar
  11. Dee, D.P., 2004. Variational bias correction of radiance data in the ECMWF system. In Proceedings of the ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, UK, 28 June–1 July 2004, pp 97–112.Google Scholar
  12. Dee, D.P., 2005. Bias and data assimilation. Q. J. R. Meteorol. Soc., 131, 3323–3343.CrossRefGoogle Scholar
  13. Dee, D.P. and A.M. da Silva, 1998. Data assimilation in presence of forecast bias. Q. J. R. Meteorol. Soc., 124, 269–295.CrossRefGoogle Scholar
  14. Dee, D.P. and R. Todling, 2000. Data assimilation in the presence of forecast bias: The GEOS moisture analysis. Mon. Weather Rev., 128, 3268–3282.CrossRefGoogle Scholar
  15. Derber, J.C., 1989. A variational continuous assimilation technique. Mon. Weather Rev., 117, 2437–2446.CrossRefGoogle Scholar
  16. Derber, J.C. and W-S. Wu, 1998. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Weather Rev., 126, 2287–2299.CrossRefGoogle Scholar
  17. Eyre, J.R., 1992. A bias correction scheme for simulated TOVS brightness temperatures. Tech. Memo., 186, ECMWF, Reading, UK.Google Scholar
  18. Friedland, B., 1969. Treatment of bias in recursive filtering. IEEE Trans. Autom. Contr., AC-14, 359–367.CrossRefGoogle Scholar
  19. Garand, L., G. Deblonde, D. Anselmo, J. Aparicio, A. Beaulne, J. Hallé, S. Macpherson and N. Wagneur, 2006. Experience with bias correction at CMC. Proceedings of the ECMWF/EUMETSAT NWP-SAF Workshop on Bias Estimation and Correction in Data Assimilation, Reading, UK, 8–11 November 2005, pp 153–162.Google Scholar
  20. Gillijns, S. and B. De Moor, 2007. Model error estimation in ensemble data assimilation. Nonlinear Process. Geophys., 14, 59–71.CrossRefGoogle Scholar
  21. Griffith, A.K. and N.K. Nichols, 1996. Accounting for model error in data assimilation using adjoint methods. In Computational Differentiation: Techniques, Applications and Tools, Berz, M., C. Bishof, G. Corliss and A. Greiwank (eds.), SIAM, Philadelphia, pp 195–204.Google Scholar
  22. Haimberger, L., 2007. Homogenization of radiosonde temperature time series using innovation statistics. J. Climate, 20, 1377–1403.CrossRefGoogle Scholar
  23. Kitanidis, P.K., 1987. Unbiased minimum-variance linear state estimation. Automatica, 23, 775–778.CrossRefGoogle Scholar
  24. Lea, D.J., J-P. Drecourt, K. Haines and M.J. Martin, 2008. Ocean altimeter assimilation with observational- and model-bias correction. Q. J. R. Meteorol. Soc., 134, 1761–1774.CrossRefGoogle Scholar
  25. Lewis, J.M., S. Lakshmivarahan and S.K. Dhall, 2006. Dynamic Data Assimilation: A Least Square Approach, Cambridge University Press, New York, 654pp.Google Scholar
  26. Ménard, R., S. Chabrillat, C. Charrette, M. Charron, T. von Clarmann, D. Fonteyn, P. Gauthier, J. de Grandpré, A. Kallaur, J. Kaminski, J. McConnell, A. Robichaud, Y. Rochon, P. Vaillancourt and Y. Yang, 2007. Coupled Chemical-Dynamical Data Assimilation. ESA/ESTEC Contract No. 18560/04/NL/FF Final report, 458 pp. Executive summary available from
  27. Ménard, R., S.E. Cohn, L-P. Chang and P.M. Lyster, 2000. Assimilation of stratospheric chemical tracer observations using a Kalman filter. Part I: Formulation. Mon. Weather Rev., 128, 2654–2671.CrossRefGoogle Scholar
  28. Ménard, R. and R. Daley, 1996. The application of Kalman smoother theory to the estimation of 4D Var error statistics. Tellus, 48A, 221–237.CrossRefGoogle Scholar
  29. Nichols, N.K., 2003. Treating model error in 3-D and 4-D data assimilation. In Data Assimilation for the Earth System, NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W.A. Lahoz (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 127–135, 378pp.CrossRefGoogle Scholar
  30. Polavarapu, S., T.G. Shepherd, Y. Rochon and S. Ren, 2005. Some challenges of middle atmosphere data assimilation. Q. J. R. Meteorol. Soc., 131, 3513–3527.CrossRefGoogle Scholar
  31. Radakovich, J.D., M.G. Bosilovich, J-D. Chern, A.M. daSilva, R. Todling, J. Joiner, M-L. Wu and P. Norris, 2004. Implementation of coupled skin temperature analysis and bias correction in the NASA/GMAO finite volume assimilation system (FvDAS). P1.3 in Proceedings of the 8th AMS Symposium on Integrated Observing and Assimilation Systems of the Atmosphere, Oceans, and Land Surface, Seattle, WA, USA, 12–15, January 2004.Google Scholar
  32. Sasaki, Y., 1970. Some basic formalisms in numerical variational analysis. Mon. Weather Rev., 98, 875–883.CrossRefGoogle Scholar
  33. Saunders, R., 2005. Sources of biases in infrared radiative transfer models. Proceedings of the ECMWF/EUMETSAT NWP-SAF Workshop on Bias Estimation and Correction in Data assimilation, 8–11 November 2005, pp 41–50.Google Scholar
  34. Simon, D., 2006. Optimal State Estimation: Kalman, \(H_\infty\), and Nonlinear Approaches, Wiley and Sons, New Jersey, 526pp.CrossRefGoogle Scholar
  35. Trémolet, Y., 2003. Model error in variational data assimilation. Proceedings ECMWF Seminar onRecent Developments in Data Assimilation for Atmosphere and Ocean”, Reading, UK, 8–12 September 2003, pp 361–367.Google Scholar
  36. Trémolet, Y., 2006. Accounting for an imperfect model in 4D-Var. Q. J. R. Meteorol. Soc., 132, 2483–2504.CrossRefGoogle Scholar
  37. Trémolet, Y., 2007. Model-error estimation in 4D-Var. Q. J. R. Meteorol. Soc., 133, 1267–1280.CrossRefGoogle Scholar
  38. Watts, P.A. and A.P. McNally, 2004. Identification and correction of radiative transfer modeling errors for atmospheric sounders: AIRS and AMSU-A. Proceedings of the ECMWF Workshop on Assimilation of High Resolution Sounders in NWP. Reading, UK, 28 June–1 July, pp 23–38.Google Scholar
  39. Wergen, W., 1992. The effect of model errors in variational assimilation. Tellus, 44A, 297–313.CrossRefGoogle Scholar
  40. Zupanski, M., 1993. Regional four-dimensional variational data assimilation in quasi-operational forecasting environment. Mon. Weather Rev., 121, 2396–2408.CrossRefGoogle Scholar
  41. Zupanski, D., 1997. A general weak constraint application to operational 4DVar data assimilation systems. Mon. Weather Rev., 125, 2274–2292.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Air Quality Research DivisionEnvironment CanadaDorvalCanada

Personalised recommendations