Data Assimilation for Other Planets

  • Stephen R. LewisEmail author


The application of data assimilation methodology to terrestrial problems in meteorology, atmospheric physics and physical oceanography has already been described extensively within this book. Data assimilation, the combination of observations and numerical models which provide physical constraints, organize and propagate the observational information which is introduced, also offers significant potential advantages for the analysis of atmospheric data from other planets. The Solar System provides seven examples of thick neutral atmospheres in addition to that of the Earth: Mars, Venus and Saturn’s moon Titan, which all have relatively large rocky cores surrounded by thinner atmospheres, like the Earth, and four largely gaseous Giant Planets, Jupiter, Saturn, Uranus and Neptune. In recent years satellites have been placed in orbit about Mars in particular, but also Venus, Jupiter and Saturn, in contrast to the relatively rapid fly-by missions in the initial stages of the exploration of the Solar System.


Data Assimilation Dust Storm Numerical Weather Prediction Martian Atmosphere Mars Global Surveyor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is grateful to W. Gregory Lawson for his insightful comments on the first draft of this chapter.


  1. Anderson, J.L., B. Wyman, S. Zhang and T. Hoar, 2005. Assimilation of surface pressure observations using an ensemble filter in an idealized global atmospheric prediction system. J. Atmos. Sci., 62, 2925–2938.CrossRefGoogle Scholar
  2. Banfield, D., B.J. Conrath, P.J. Gierasch, R.J. Wilson and M.D. Smith, 2004. Traveling waves in the martian atmosphere from MGS TES nadir data. Icarus, 170, 365–403.CrossRefGoogle Scholar
  3. Banfield, D., A.P. Ingersoll and C.L. Keppenne, 1995. A steady-state Kalman filter for assimilating data from a single polar orbiting satellite. J. Atmos. Sci., 52, 737–753.CrossRefGoogle Scholar
  4. Barnes, J.R., 1980. Time spectral-analysis of mid-latitude disturbances in the martian atmosphere. J. Atmos. Sci., 37, 2002–2015.CrossRefGoogle Scholar
  5. Barnes, J.R., 1981. Mid-latitude disturbances in the martian atmosphere – a 2nd Mars year. J. Atmos. Sci., 38, 225–234.CrossRefGoogle Scholar
  6. Bengtsson, L. and N. Gustafsson, 1971. Experiment in assimilation of data in dynamical analysis. Tellus, 23, 328–336.CrossRefGoogle Scholar
  7. Christensen, P.R., D.L. Anderson, S.C. Chase, R.N. Clark, H.H. Kieffer, M.C. Malin, J.C. Pearl, J. Carpenter, N. Bandiera, F.G. Brown and S. Silverman, 1992. Thermal emission spectrometer experiment – Mars observer mission. J. Geophys. Res., 97, 7719–7734.CrossRefGoogle Scholar
  8. Clancy, R.T., S.W. Lee, G.R. Gladstone, W.W. McMillan and T. Rousch, 1995. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos. J. Geophys. Res., 100, 5251–5263.CrossRefGoogle Scholar
  9. Collins, M., S.R. Lewis, P.L. Read and F. Hourdin, 1996. Baroclinic wave transitions in the martian atmosphere. Icarus, 120, 344–357.CrossRefGoogle Scholar
  10. Conrath, B.J., J.C. Pearl, M.D. Smith and P.R. Christensen, 2002. MGS TES results: Atmospheric structure, aerosols, and dynamics. Highlights Astron., 12, 638–641.Google Scholar
  11. Conrath, B.J., J.C. Pearl, M.D. Smith, W.C. Maguire, P.R. Christensen, S. Dason and M.S. Kaelberer, 2000. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: Atmospheric temperatures during aerobraking and science phasing. J. Geophys. Res., 105, 9509–9519.CrossRefGoogle Scholar
  12. Courtier, P. and O. Talagrand, 1987. Variational assimilation of meteorological observations with the adjoint vorticity equation. 2. Numerical results. Q. J. R. Meteorol. Soc., 113, 1329–1347.CrossRefGoogle Scholar
  13. Cunningham, G.E., A.L. Albee and T.E. Thorpe, 1992. Mars Observer as a precursor to intensive exploration of Mars. Acta Astronautica, 28, 259–275.CrossRefGoogle Scholar
  14. Dowling, T.E., M.E. Bradley, E. Colon, J. Kramer, R.P. LeBeau, G.C.H. Lee, T.I. Mattox, R. Morales-Juberias, C.J. Palotai, V.K. Parimi and A.P. Showman, 2006. The EPIC atmospheric model with an isentropic/terrain-following hybrid vertical coordinate. Icarus, 182, 259–273.CrossRefGoogle Scholar
  15. Dowling, T.E., A.S. Fischer, P.J. Gierasch, J. Harrington, R.P. LeBeau and C.M. Santori, 1998. The explicit planetary isentropic-coordinate (EPIC) atmospheric model. Icarus, 132, 221–238.CrossRefGoogle Scholar
  16. Ehrendorfer, M., 1997. Predicting the uncertainty of numerical weather forecasts: A review. Meteorol. Z., 6, 147–183.Google Scholar
  17. Forget, F., F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read and J.P. Huot, 1999. Improved general circulation models of the martian atmosphere from the surface to above 80 km. J. Geophys. Res., 104, 24155–24175.CrossRefGoogle Scholar
  18. Gierasch, P. and R. Goody, 1967. An approximate calculation of radiative heating and radiative equilibrium in the martian atmosphere. Planet. Space Sci., 15, 1465–1477.CrossRefGoogle Scholar
  19. Gierasch, P. and R. Goody, 1968. A study of the thermal and dynamical structure of the martian lower atmosphere. Planet. Space Sci., 16, 615–636.CrossRefGoogle Scholar
  20. Goody, R. and M.J.S. Belton, 1967. Radiative relaxation times for Mars – a discussion of martian atmospheric dynamics. Planet. Space Sci., 15, 247–256.CrossRefGoogle Scholar
  21. Haberle, R.M., J.B. Pollack, J.R. Barnes, R.W. Zurek, C.B. Leovy, J.R. Murphy, H. Lee and J. Schaeffer, 1993. Mars atmospheric dynamics as simulated by the Nasa Ames general-circulation model .1. The zonal-mean circulation. J. Geophys. Res., 98, 3093–3123.CrossRefGoogle Scholar
  22. Hess, S.L., J.A. Ryan, J.E. Tillman, R.M. Henry and C.B. Leovy, 1980. The annual cycle of pressure on Mars measured by Viking-Lander-1 and Viking-Lander-2. Geophys. Res. Lett., 7, 197–200.CrossRefGoogle Scholar
  23. Hollingsworth, J.L., R.E. Young, G. Schubert, C. Covey and A.S. Grossman, 2007. A simple-physics global circulation model for Venus: Sensitivity assessments of atmospheric superrotation. Geophys. Res. Lett., 34, L05202.Google Scholar
  24. Houben, H., 1999. Assimilation of Mars global surveyor meteorological data. Adv. Space Res., 23, 1899–1902.CrossRefGoogle Scholar
  25. Houtekamer, P.L. and H.L. Mitchell, 2005. Ensemble Kalman filtering. Q. J. R. Meteorol. Soc., 131, 3269–3289.CrossRefGoogle Scholar
  26. Justus, C.G., B.F. James, S.W. Bougher, A.F.C. Bridger, R.M. Haberle, J.R. Murphy and S. Engel, 2002. Mars-GRAM 2000: A Mars atmospheric model for engineering applications. Adv. Space Res., 29, 193–202.CrossRefGoogle Scholar
  27. Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng., 82D, 35–45.CrossRefGoogle Scholar
  28. Kalnay, E., 2003. Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, New York, 341 pp.Google Scholar
  29. Kass, D.M., 1999. Change in the Martian Atmosphere, Ph.D. Thesis, Planetary Science, California Institute of Technology, Pasadena, CA.Google Scholar
  30. Lebonnois, S., F. Hourdin, V. Eymet, A. Crespin, R. Fournier and F. Forget, 2010. Superrotation of Venus’ atmosphere analysed with a full General Circulation Model. J. Geophys. Res., (accepted).Google Scholar
  31. Lee, C., S.R. Lewis and P.L. Read, 2005. A numerical model of the atmosphere of Venus. Planet. Atmos., Ionospheres Magnetospheres, 36, 2142–2145.Google Scholar
  32. Lee, C., S.R. Lewis and P.L. Read, 2007. Superrotation in a Venus general circulation model. J. Geophys. Res., 112, E04S11.Google Scholar
  33. Lewis, S.R., 2003. Modelling the martian atmosphere. Astron. Geophys., 44, 6–14.CrossRefGoogle Scholar
  34. Lewis, S.R. and P.R. Barker, 2005. Atmospheric tides in a Mars general circulation model with data assimilation. Adv. Space Res., 36, 2162–2168.CrossRefGoogle Scholar
  35. Lewis, S.R., M. Collins and P.L. Read, 1997. Data assimilation with a martian atmospheric GCM: An example using thermal data. Adv. Space Res., 19, 1267–1270.CrossRefGoogle Scholar
  36. Lewis, S.R., M. Collins, P.L. Read, F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand and J.P. Huot, 1999. A climate database for Mars. J. Geophys. Res., 104, 24177–24194.CrossRefGoogle Scholar
  37. Lewis, S.R. and P.L. Read, 1995. An operational data assimilation scheme for the martian atmosphere. Adv. Space Res., 16, 9–13.CrossRefGoogle Scholar
  38. Lewis, S.R., P.L. Read and M. Collins, 1996. Martian atmospheric data assimilation with a simplified general circulation model: Orbiter and lander networks. Planet. Space Sci., 44, 1395–1409.CrossRefGoogle Scholar
  39. Lewis, S.R., P.L. Read, B.J. Conrath, J.C. Pearl and M.D. Smith, 2007. Assimilation of thermal emission spectrometer atmospheric data during the mars global surveyor aerobraking period. Icarus, 192, 327–347.CrossRefGoogle Scholar
  40. Lorenc, A.C., R.S. Bell and B. Macpherson, 1991. The meteorological office analysis correction data assimilation scheme. Q. J. R. Meteorol. Soc., 117, 59–89.CrossRefGoogle Scholar
  41. McCleese, D.J., R.D. Haskins, J.T. Schofield, R.W. Zurek, C.B. Leovy, D.A. Paige and F.W. Taylor, 1992. Atmosphere and climate studies of Mars using the Mars observer pressure modulator infrared radiometer. J. Geophys. Res., 97, 7735–7757.CrossRefGoogle Scholar
  42. McCleese, D.J., J.T. Schofield, F.W. Taylor, S.B. Calcutt, M.C. Foote, D.M. Kass, C.B. Leovy, D.A. Paige, P.L. Read and R.W. Zurek, 2007. Mars climate sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. J. Geophys. Res., 112, E05S06.Google Scholar
  43. Mitchell, R.T., 2007. The Cassini mission at Saturn. Acta Astronautica, 61, 37–43.CrossRefGoogle Scholar
  44. Montabone, L., S.R. Lewis and P.L. Read, 2005. Interannual variability of martian dust storms in assimilation of several years of Mars Global Surveyor observations. Adv. Space Res., 36, 2146–2155.CrossRefGoogle Scholar
  45. Montabone, L., S.R. Lewis, P.L. Read and D.P. Hinson, 2006a. Validation of martian meteorological data assimilation for MGS/TES using radio occultation measurements. Icarus, 185, 113–132.CrossRefGoogle Scholar
  46. Montabone, L., S.R. Lewis, P.L. Read and P. Withers, 2006b. Reconstructing the weather on Mars at the time of the MERs and Beagle 2 landings. Geophys. Res. Lett., 33, L19202.Google Scholar
  47. Newman, C.E., P.L. Read and S.R. Lewis, 2004. Investigating atmospheric predictability on Mars using breeding vectors in a general circulation model. Q. J. R. Meteorol. Soc., 130, 2971–2989.CrossRefGoogle Scholar
  48. Pollack, J.B., R.M. Haberle, J. Schaeffer and H. Lee, 1990. Simulations of the general circulation of the martian atmosphere. 1. Polar processes. J. Geophys. Res., 95, 1447–1473.CrossRefGoogle Scholar
  49. Rabier, F., 2005. Overview of global data assimilation developments in numerical weather-prediction centres. Q. J. R. Meteorol. Soc., 131, 3215–3233.CrossRefGoogle Scholar
  50. Read, P.L. and S.R. Lewis, 2004. The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet, Springer-Praxis Publisher, Berlin, New York, 402 pp.Google Scholar
  51. Rutherford, I., 1972. Data assimilation by statistical interpolation of forecast error fields. J Atmos. Sci., 29, 809–815.CrossRefGoogle Scholar
  52. Saunders, R.S., R.E. Arvidson, G.D. Badhwar, W.V. Boynton, P.R. Christensen, F.A Cucinotta, W.C. Feldman, R.G. Gibbs, C. Kloss, M.R. Landano, R.A. Mase, G.W. McSmith, M.A. Meyer, I.G. Mitrofanov, G.D. Pace, J.J. Plaut, W.P. Sidney, D.A. Spencer, T.W. Thompson and C.J. Zeitlin, 2004. 2001 Mars Odyssey mission summary. Space Sci. Rev., 110, 1–36.CrossRefGoogle Scholar
  53. Schmidt, R., 2003. Mars Express – ESA’s first mission to planet Mars. Acta Astronautica, 52, 197–202.CrossRefGoogle Scholar
  54. Schofield, J.T., J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhaes, J.R. Murphy, A. Seiff and G. Wilson, 1997. The Mars Pathfinder atmospheric structure investigation meteorology (ASI/MET) experiment. Science, 278, 1752–1758.CrossRefGoogle Scholar
  55. Smith, M.D., 2004. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus, 167, 148–165.CrossRefGoogle Scholar
  56. Smith, M.D., J.C. Pearl, B.J. Conrath and P.R. Christensen, 2000. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing. J. Geophys. Res., 105, 9539–9552.CrossRefGoogle Scholar
  57. Smith, M.D., J.C. Pearl, B.J. Conrath and P.R. Christensen, 2001. Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution. J. Geophys. Res., 106, 23929–23945.CrossRefGoogle Scholar
  58. Smith, M.D., M.J. Wolff, N. Spanovich, A. Ghosh, D. Banfield, P.R. Christensen, G.A. Landis and S.W. Squyres, 2006. One martian year of atmospheric observations using MER Mini-TES. J. Geophys. Res., 111, E12S13.Google Scholar
  59. Talagrand, O. and P. Courtier, 1987. Variational assimilation of meteorological observations with the adjoint vorticity equation. 1. Theory. Q. J. R. Meteorol. Soc., 113, 1311–1328.CrossRefGoogle Scholar
  60. Titov, D.V., H. Svedhem, D. McCoy, J.P. Lebreton, S. Barabash, J.L. Bertaux, P. Drossart, V. Formisano, B. Haeusler, O.I. Korablev, W. Markiewicz, D. Neveance, M. Petzold, G. Piccioni, T.L. Zhang, F.W. Taylor, E. Lellouch, D. Koschny, O. Witasse, M. Warhaut, A. Acomazzo, J. Rodrigues-Cannabal, J. Fabrega, T. Schirmann, A. Clochet and M. Coradini, 2006. Venus express: Scientific goals, instrumentation, and scenario of the mission. Cosmic Res., 44, 334–348.CrossRefGoogle Scholar
  61. Toth, Z., 2001. Ensemble forecasting in WRF. Bull. Amer. Meteorol. Soc., 82, 695–697.CrossRefGoogle Scholar
  62. Wilson, R.J., D. Banfield, B.J. Conrath and M.D. Smith, 2002. Traveling waves in the northern hemisphere of Mars. Geophys. Res. Lett., 29, 1684, doi:10.1029/2002GL014866.CrossRefGoogle Scholar
  63. Wilson, R.J., S.R. Lewis, L. Montabone and M.D. Smith, 2008. Influence of water ice clouds on martian tropical atmospheric temperatures. Geophys. Res. Lett., 35, L07202, doi: 10.1029/2007GL032405.Google Scholar
  64. Yamamoto, M. and M. Takahashi, 2003. The fully developed superrotation simulated by a general circulation model of a Venus-like atmosphere. J. Atmos. Sci., 60, 561–574.CrossRefGoogle Scholar
  65. Yamamoto, M. and M. Takahashi, 2006. An aerosol transport model based on a two-moment microphysical parameterization in the Venus middle atmosphere: Model description and preliminary experiments. J. Geophys. Res., 111, E08002.Google Scholar
  66. Young, R.E., 1998. The Galileo probe mission to Jupiter: Science overview. J. Geophys. Res., 103, 22775–22790.CrossRefGoogle Scholar
  67. Young, R.E., 2000. Correction to “The Galileo probe mission to Jupiter: Science overview”. J. Geophys. Res., 105, 12093–12093.Google Scholar
  68. Zhang, K.Q., A.P. Ingersoll, D.M. Kass, J.C. Pearl, M.D. Smith, B.J. Conrath and R.M. Haberle, 2001. Assimilation of Mars global surveyor atmospheric temperature data into a general circulation model. J. Geophys. Res., 106, 32863–32877.CrossRefGoogle Scholar
  69. Zurek, R.W., J.R. Barnes, R.M. Haberle, J.B. Pollack, J.E. Tillman and C.B. Leovy, 1992. Dynamics of the atmosphere of Mars. In Mars, Matthews, M.S. (ed.), University of Arizona Press, Tucson, AZ.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Physics and AstronomyThe Open UniversityMilton KeynesUK

Personalised recommendations