Advertisement

Mathematical Concepts of Data Assimilation

  • N. K. NicholsEmail author
Chapter

Abstract

Environmental systems can be realistically described by mathematical and numerical models of the system dynamics. These models can be used to predict the future behaviour of the system, provided that the initial states of the system are known. Complete data defining all of the states of a system at a specific time are, however, rarely available. Moreover, both the models and the available initial data contain inaccuracies and random noise that can lead to significant differences between the predicted states and the actual states of the system. In this case, observations of the system over time can be incorporated into the model equations to derive “improved” estimates of the states and also to provide information about the “uncertainty” in the estimates.

Keywords

Model Error Data Assimilation Proper Orthogonal Decomposition Extended Kalman Filter Adjoint Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson, J.L., 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev., 129, 2884–2903.CrossRefGoogle Scholar
  2. Anderson, J.L. and S.L. Anderson, 1999. A Monte Carlo implementation of the non-linear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev., 127, 2741–2758.CrossRefGoogle Scholar
  3. Apte, A., M. Hairer, A.M. Stuart and J. Voss, 2007. Sampling the posterior: An approach to non-Gaussian data assimilation. Physica D, 230, 50–64.CrossRefGoogle Scholar
  4. Bannister, R.N., D. Katz, M.J.P. Cullen, A.S. Lawless and N.K. Nichols, 2008. Modelling of forecast errors in geophysical fluid flows. Int. J. Numeric. Methods Fluids, 56, 1147–1153, doi:10.1002/fld.1618.CrossRefGoogle Scholar
  5. Barnett, S. and R.G. Cameron, 1985. Introduction to the Mathematical Theory of Control, 2nd edition, Clarendon Press, Oxford, UK.Google Scholar
  6. Bennett, A.F., 1992. Inverse Methods in Physical Oceanography. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  7. Bell, M.J., M.J. Martin and N.K. Nichols, 2004. Assimilation of data into an ocean model with systematic errors near the equator. Q. J. R. Meteorol. Soc., 130, 873–894.CrossRefGoogle Scholar
  8. Bergthorsson, P. and B.R. Döös, 1955. Numerical weather map analysis. Tellus, 7, 329–340.CrossRefGoogle Scholar
  9. Bierman, G.L., 1977. Factorization Methods for Discrete Sequential Estimation, Mathematics in Science and Engineering, vol. 128, Academic Press, New York.Google Scholar
  10. Bishop, C.H., B.J. Etherton and S.J. Majumdar, 2001. Adaptive sampling with the ensemble trasform Kalman filter. Part I: Theoretical aspects, Mon. Weather Rev., 129, 420–436.CrossRefGoogle Scholar
  11. Boess, C., 2008. Using model reduction techniques within the incremental 4D-Var method, PhD Thesis, Fachbereich 3 – Mathematik und Informatik, Universitaet Bremen.Google Scholar
  12. Bratseth, A.M., 1986. Statistical interpolation by means of successive corrections. Tellus, 38A, 439–447.CrossRefGoogle Scholar
  13. Bunse-Gerstner, A., D. Kubalinska, G. Vossen and D. Wilczek, 2007. h2-norm optimal model reduction for large-scale discrete dynamical MIMO systems, Universitaet Bremen, Zentrum fur Technomathematik, Technical Report 07-04.Google Scholar
  14. Burgers, G., P.J. van Leeuwen and G. Evensen, 1998. Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev., 126, 1719–1724.CrossRefGoogle Scholar
  15. Cao, Y., J. Zhu, I.M. Navon and Z. Luo, 2007. A reduced-order approach to four-dimensional variational data assimilatio using proper orthogonal decomposition. Int. J. Numeric. Meth. Fluids, 53, 1571–1583.CrossRefGoogle Scholar
  16. Cohn, S.E., A. da Silva, J. Guo, M. Sienkiewicz and D. Lamich, 1998. Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Weather Rev., 126, 2913–2926.CrossRefGoogle Scholar
  17. Courtier, P., 1997. Dual formulation of four-dimensional variational assimilation. Q. J. R. Meteorol. Soc., 123, 2449–2461.CrossRefGoogle Scholar
  18. Courtier, P., J.-N. Thépaut and A. Hollingsworth, 1994. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc., 120, 1367–1387.CrossRefGoogle Scholar
  19. Cressman, G., 1959. An optimal objective analysis system. Mon. Weather Rev., 87, 367–374.CrossRefGoogle Scholar
  20. Cullen, M.J.P., 2003. Four-dimensional variational data assimilation: A new formulation of the background covariance matrix based on a potential vorticity representation. Q. J. R. Meteorol. Soc., 129, 2777–2796.CrossRefGoogle Scholar
  21. Daley, R., 1993. Atmospheric Data Analysis. Cambridge University Press, Cambridge, UK.Google Scholar
  22. Daley, R. and E. Barker, 2001. NAVDAS: Formulation and diagnostics. Mon. Weather Rev., 129, 869–883.CrossRefGoogle Scholar
  23. Dee, D.P. and A.M. da Silva, 1998. Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. Soc., 117, 269–295.CrossRefGoogle Scholar
  24. Derber, J.C., 1989. A variational continuous assimilation technique. Mon. Weather Rev., 117, 2437–2446.CrossRefGoogle Scholar
  25. ECMWF., 2007. Proceedings of the ECMWF Workshop on Flow Dependent Aspects of Data Assimilation 11–13 June, 2007, ECMWF, UK.Google Scholar
  26. Evensen, G., 2003. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343–367.CrossRefGoogle Scholar
  27. Ghil, M. and P. Malanotte-Rizzoli, 1991. Data assimilation in meteorology and oceanography. Adv. Geophys., 33, 141–266.CrossRefGoogle Scholar
  28. Giering, R. and T. Kaminski, 1998. Recipes for adjoint code construction. ACM Trans. Math. Software, 24, 437–474.CrossRefGoogle Scholar
  29. Gratton, S., A.S. Lawless and N.K. Nichols, 2007. Approximate Gauss-Newton methods for non-linear least-squares problems. SIAM J. Optim., 18, 106–132.CrossRefGoogle Scholar
  30. Griewank, A. and G.F. Corliss, 1991. Automatic Differentiation of Algorithms, SIAM, PA.Google Scholar
  31. Griffith, A.K., 1997. Data Assimilation for Numerical Weather Prediction Using Control Theory, The University of Reading, Department of Mathematics, PhD Thesis. http://www.reading.ac.uk/maths/research/maths-phdtheses.asp#1997.
  32. Griffith, A.K. and N.K. Nichols, 1996. Accounting for model error in data assimilation using adjoint methods. In Computational Differentiation: Techniques, Applications and Tools, Berz, M., C. Bischof, G. Corliss and A. Greiwank (eds.), SIAM, PA, pp 195–204.Google Scholar
  33. Griffith, A.K. and N.K. Nichols, 2000. Adjoint techniques in data assimilation for estimating model error. J. Flow, Turbulence Combustion, 65, 469–488.CrossRefGoogle Scholar
  34. Houtekamer, P.L. and H.L. Mitchell, 1998. Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev., 126, 796–811.CrossRefGoogle Scholar
  35. Johnson, C., B.J. Hoskins and N.K. Nichols, 2005a. A singular vector perspective of 4-DVar: Filtering and interpolation. Q. J. R. Meteorol. Soc., 131, 1–20.CrossRefGoogle Scholar
  36. Johnson, C., N.K. Nichols and B.J. Hoskins, 2005b. Very large inverse problems in atmosphere and ocean modelling. Int. J. Numeric. Methods Fluids, 47, 759–771.CrossRefGoogle Scholar
  37. Kalman, R.E., 1961. A new approach to linear filtering and prediction problems. Trans. ASME, Series D, 83, 35–44.Google Scholar
  38. Katz, D., 2007. The application of PV-based control variable transformations in variational data assimilation, PhD Thesis, Department of Mathematics, University of Reading. http://www.reading.ac.uk/maths/research/maths-phdtheses.asp#2007.
  39. Kim, S., G.L. Eyink, J.M. Restrepo, F.J. Alexander and G. Johnson, 2003. Ensemble filtering for non-linear dynamics. Mon. Weather Rev., 131, 2586–2594.CrossRefGoogle Scholar
  40. Lawless, A.S., S. Gratton and N.K. Nichols, 2005. An investigation of incremental 4D-Var using non-tangent linear models. Q. J. R. Meteorol. Soc., 131, 459–476.CrossRefGoogle Scholar
  41. Lawless, A.S. and N.K. Nichols, 2006. Inner loop stopping criteria for incremental fourdimensional variational data assimilation. Mon. Weather Rev., 134, 3425–3435.CrossRefGoogle Scholar
  42. Lawless, A.S., N.K. Nichols and S.P. Ballard, 2003. A comparison of two methods for developing the linearization of a shallow water model. Q. J. R. Meteorol. Soc., 129, 1237–1254.CrossRefGoogle Scholar
  43. Lawless, A.S., N.K. Nichols, C. Boess and A. Bunse-Gerstner, 2008. Using model reduction methods within incremental four-dimensional variational data assimilation. Mon. Weather Rev., 136, 1511–1522.CrossRefGoogle Scholar
  44. Livings, D.M., S.L. Dance and N.K. Nichols, 2008. Unbiased ensemble square root filters. Physica D, 237, 1021–1028.CrossRefGoogle Scholar
  45. Lorenc, A.C., 1986. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc., 112, 1177–1194.CrossRefGoogle Scholar
  46. Lorenc, A.C., 1988. Optimal non-linear objective analysis. Q. J. R. Meteorol. Soc., 114, 205–240.CrossRefGoogle Scholar
  47. Lorenc, A.C., R.S. Bell and B. Macpherson, 1991. The Met. Office analysis correction data assimilation scheme. Q. J. R. Meteorol. Soc., 117, 59–89.CrossRefGoogle Scholar
  48. Martin, M.J., 2001. Data Assimilation in Ocean Circulation Models with Systematic Errors, The University of Reading, Department of Mathematics, PhD Thesis. http://www.reading.ac.uk/maths/research/maths-phdtheses.asp#2001.
  49. Martin, M.J., M.J. Bell and N.K. Nichols, 2001. Estimation of systematic error in an equatorial ocean model using data assimilation. In Numerical Methods for Fluid Dynamics VII, Baines, M.J. (ed.), ICFD, Oxford, pp 423–430.Google Scholar
  50. Martin, M.J., N.K. Nichols and M.J. Bell, 1999. Treatment of Systematic Errors in Sequential Data Assimilation, Meteorological Office, Ocean Applications Division, Tech. Note, No. 21.Google Scholar
  51. Nerger, L., W. Hiller and J. Schroeter, 2005. A comparison of error subspace Kalman filters. Tellus, 57A, 715–735.CrossRefGoogle Scholar
  52. Nichols, N.K., 2003a. Data assimilation: Aims and basic concepts. In Data Assimilation for the Earth System, NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W.A. Lahoz (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 9–20, 378pp.CrossRefGoogle Scholar
  53. Nichols, N.K., 2003b. Treating model error in 3-D and 4-D data assimilation. In Data Assimilation for the Earth System, NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W.A. Lahoz (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 127–135, 378pp.CrossRefGoogle Scholar
  54. Ott, E., B.R. Hunt, I. Szunyogh, A.V. Zimin, E.J. Kostelich, M. Corazza, E. Kalnay, D.J. Patil and J.A.l Yorke, 2004. A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428.CrossRefGoogle Scholar
  55. Pham, D.T., 2001. Stochastic methods for sequential data assimilation in strongly non-linear systems. Mon. Weather Rev., 129, 1194–1207.CrossRefGoogle Scholar
  56. Rabier, F., P. Courtier, J. Pailleux, O. Talalgrand and D. Vasiljevic, 1993. A comparison between four-dimensional variational assimilation and simplified sequential assimilation relying on three-dimensionsal variational analysis. Q. J. R. Meteorol. Soc., 119, 845–880.CrossRefGoogle Scholar
  57. Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf and A. Simmons, 2000. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc., 126, 1143–1170.CrossRefGoogle Scholar
  58. Radnoti, G., Y. Trémolet, E. Andersson, L. Isaksen, E. Hólm and M. Janiscova, 2005. Diagnostics of linear and incremental approximations in 4D-Var revisted for highter resolution analysis, ECMWF Technical Memorandum, No. 467, European Centre for Medium-Range Weather Forecasts, Reading, UK.Google Scholar
  59. Rosmond, T. and L. Xu, 2006. Development of NAVDAS-AR: Non-linear formulation and outer loop tests. Tellus, 58A, 45–58.CrossRefGoogle Scholar
  60. Sasaki, Y., 1970. Some basic formulisms on numerical variational analysis. Mon. Weather Rev., 98, 875–883.CrossRefGoogle Scholar
  61. Smith, P.J., M.J. Baines, S.L. Dance, N.K. Nichols and T.R. Scott, 2008. Data assimilation for parameter estimation with application to a simple morphodynamic model, University of Reading, Department of Mathematics, Mathematics Report 2/2008.Google Scholar
  62. Talagrand, O., 1981. A study on the dynamics of four-dimensional data assimilation. Tellus, 33, 43–60.CrossRefGoogle Scholar
  63. Tippett, M.K., J.L. Anderson, C.H. Bishop, T.M. Hamil and J.S. Whitaker, 2003. Ensemble square root filters. Mon. Weather Rev., 131, 1485–1490.CrossRefGoogle Scholar
  64. Trémolet, Y., 2005. Incremental 4D-Var Convergence Study, ECMWF Technical Memorandum, No. 469, European Centre for Medium-Range Weather Forecasts, Reading, UK.Google Scholar
  65. van Leeuwen, P.J., 2003. A variance minimizing filter for large scale applications. Mon. Weather Rev., 131, 2071–2084.CrossRefGoogle Scholar
  66. Vermeulen, P.T.M. and A.W. Heemink, 2006. Model-reduced variational data assinilation. Mon. Weather Rev., 134, 2888–2899.CrossRefGoogle Scholar
  67. Weaver, A. and P. Courtier, 2001. Correlation modelling on the sphere using a generalized diffusion equation. Q. J. R. Meteorol. Soc., 127, 1815–1846.CrossRefGoogle Scholar
  68. Willcox, K. and J. Peraire, 2002. Model reduction via the proper orthogonal decomposition. AIAA J., 40, 2323–2330.CrossRefGoogle Scholar
  69. Wlasak, M.A., N.K. Nichols and I. Roulstone, 2006. Use of potential vorticity for incremental data assimilation. Q. J. R. Meteorol. Soc., 132, 2867–2886.CrossRefGoogle Scholar
  70. Xu, L., T. Rosmond and R. Daley, 2005. Development of NAVDAS-AR: Formulation and initial tests of the linear problem. Tellus, 57A, 546–559.CrossRefGoogle Scholar
  71. Zupanski, D., 1997. A general weak constraint applicable to operational 4D-Var data assimilation systems. Mon. Weather Rev., 123, 1112–1127.CrossRefGoogle Scholar
  72. Zupanski, M., 2005. Maximum likelihood ensemble filter: Theoretical aspects. Mon. Weather Rev., 133, 1710–1726.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ReadingReadingUK

Personalised recommendations