The Global Observing System

  • Jean-Noël ThépautEmail author
  • Erik Andersson


In this chapter we describe the main components of what is commonly known as the World Weather Watch Global Observing System (GOS), and review the different techniques to observe the atmosphere, the ocean and land surfaces. It should be stressed that the various observing systems generally tend to be complementary to one another, and that redundancy where it exists is valuable as it enables cross checking and inter-comparison of data.


Numerical Weather Prediction Wind Profile Microwave Limb Sound High Vertical Resolution Satellite Instrument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andersson, E., P. Bauer, A. Beljaars, F. Chevallier, E. Hólm M. Janisková, P. Kållberg, G. Kelly, P. Lopez, A. McNally, E. Moreau, A.J. Simmons, J.-N. Thépaut and A.M. Tompkins, 2005. Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull. Amer. Meteorol. Soc., 86, 387–402.CrossRefGoogle Scholar
  2. Andersson, E. and A. Garcia-Mendez, 2002. Assessment of European wind profiler data, in an NWP context. ECMWF Tech. Memo., 372, pp 14.Google Scholar
  3. Bauer, P., P. Lopez, A. Benedetti, D. Salmond and E. Moreau, 2006. Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. I: 1D-Var. Q. J. R. Meteorol. Soc., 132, 2277–2306.CrossRefGoogle Scholar
  4. Bouttier, F. and G. Kelly, 2001. Observing-system experiments in the ECMWF 4D-Var data assimilation system. Q. J. R. Meteorol. Soc., 127, 1469–1488.CrossRefGoogle Scholar
  5. Chevallier, F., P. Bauer, J.-F. Mahfouf and J.-J. Morcrette, 2002. Variational retrieval of cloud profiles from ATOVS observations. Q. J. R. Meteorol. Soc., 128, 2511–2525.CrossRefGoogle Scholar
  6. Compo, G.P., J.S. Whitaker, and P.D. Sardeshmukh, 2006. Feasibility of a 100-Year Reanalysis Using Only Surface Pressure Data. Bull. Amer. Meteorol. Soc., 87, 175–190.CrossRefGoogle Scholar
  7. Eyre, J.E., 2000. Planet Earth seen from space: Basic Concepts. In Proceedings of the ECMWF Seminar on the Exploitation of the New Generation of Satellite Instruments for Numerical Weather Prediction, pp 5–19.Google Scholar
  8. Healy, S.B. and J.-N. Thépaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements Q. J. R. Meteorol. Soc., 132, 605–623.CrossRefGoogle Scholar
  9. Hou, A.Y., S. Zhang, A. da Silva, W. Olson, C. Kummerow and J. Simpson, 2001. Improving global analysis and short-range forecats using rainfall and moisture observations derived from TRMM and SSM/I passive microwave sensors. Bull. Amer. Meteor. Soc., 82, 659–679.CrossRefGoogle Scholar
  10. Järvinen, H., E. Andersson and F. Bouttier, 1999. Variational assimilation of time sequences of surface observations with serially correlated errors. Tellus, 51A, 469–488.Google Scholar
  11. Kelly, G., A.P. McNally, J.-N. Thépaut and M.D.E. Szyndel, 2004. Observing Experiments of all main data types in the ECMWF operational system. In Proceedings of 3rd WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction, Alpbach, Austria, 9–12 March 2004, pp 63–94.Google Scholar
  12. Labitzke, K.G. and H. van Loon, 1999. The Stratosphere Phenomena, History and Relevance. Springer, Berlin, 179 pp.Google Scholar
  13. Langland, R.H., 2005. Issues in targeted observing. Q. J. R. Meteorol. Soc., 131, 3409–3425.CrossRefGoogle Scholar
  14. Poli, P., P. Moll, F. Rabier, G. Desroziers, B. Chapnik, L. Berre, S.B. Healy, E. Andersson and F.-Z. El Guelai, 2007. Forecast impact studies of zenith total delay data from European near real-time GPS stations in Météo-France 4DVar. J. Geophys. Res., 112, D06114, doi: 10.1029/2006JD007430.Google Scholar
  15. Stoffelen, A., J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann and P. Ingmann, 2005. The atmospheric dynamics mission for global wind measurement. Bull. Amer. Meteorol. Soc., 86, 73–87.CrossRefGoogle Scholar
  16. Swinbank, R., 2003. Observing the atmosphere. In Data Assimilation for the Earth System. NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W.A. Lahoz (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 137–148, 378pp.Google Scholar
  17. Tan, D.G.H., E. Andersson, M. Fisher and L. Isaksen, 2007. Observing system impact assessment using a data assimilation ensemble technique: Application to the ADM-Aeolus wind profiling mission. Q. J. R. Meteorol. Soc., 133, 381–390.CrossRefGoogle Scholar
  18. Thépaut, J.-N., 2003. Assimilation of remote sensing observations in numerical weather prediction. In Data Assimilation for the Earth System. NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W.A. Lahoz (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 225–240, 378pp.Google Scholar
  19. Weissmann, M. and C. Cardinali, 2007. Impact of airborne Doppler lidar observations on ECMWF forecasts. Q. J. R. Meteorol. Soc., 133, 107–116.CrossRefGoogle Scholar
  20. WMO/CBS OPAG on Integrated Observing Systems: Final report of the 7th Session of the Expert Team on Observational Data Requirements and redesign of the Global Observing System, Geneva, Switzerland, 12–16 July 2004. Available from WMO website. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.European Centre for Medium-Range Weather Forecasts, ECMWFShinfieldUK

Personalised recommendations